2021人民大学偏微方程系列报告会 2
时间:2021-08-30  浏览:

主办单位:中国人民大学数学科学研究院

会议资助:国家自然科学基金

                中国人民大学“双一流”基金

2021人民大学偏微方程系列报告会2

日程安排

2021年9月4日,周六,上午

腾讯会议ID:149 537 632

时间

会议内容

8:50-9:30

李敬宇(东北师范大学)

9:30-10:10

苏琳琳(南方科技大学)

10:10-10:20

休息

10:20-11:00

金海洋(华南理工大学)

11:00-11:40

涂馨予(西南大学)


《2021偏微方程系列报告会2》

报告题目与摘要


Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model

金海洋

华南理工大学

报告摘要:In this talk, we shall show the negligibility of haptotaxis effect compared to chemotaxis effect in terms of boundedness, blow-up and long time behavior in the chemotaxis-haptotaxis model without logistic source.

演讲人简介:金海洋,华南理工大学教授,于2014年10月在香港理工大学获得博士学位。 目前主要对描述生物趋化性运动的非线性偏微分方程进行相关的理论研究。现在JDE、 M3AS、 Nonlinearity、 SIAP 等国际重要学术期刊上发表SCI论文二十余篇, 主持国家自然科学基金面上项目、青年科学基金各一项。


Convergence towards spiky steady state to singular chemotaxis models with physical boundary condition

李敬宇

东北师范大学

报告摘要:We study the asymptotic stability of spiky steady states to two chemotaxis models with nonhomogeneous Dirichlet boundary condition. Both the models describe the aggregation phenomena of bacteria consuming nutrient in a capillary tube. The main difficulties of the problem are the singularity caused by logarithmic sensitivity and vacuum end state, as well as degeneracy in one model. The proofs are based on the Cole-Hopf transformation, weighted energy estimates in combination with elliptic estimates,Hardy inequality, and a bootstrap argument.

演讲人简介:李敬宇,东北师范大学教授,已在Proc.London Math. Soc., SIAM J. Math. Anal., J. Differential Equations, Math. Models Methods Appl. Sci.等期刊发表多篇论文,获得国家自然科学基金青年基金和面上项目的资助。


A semilinear interface problem arising from population genetics

苏琳琳

南方科技大学

报告摘要:Of concern is a semilinear parabolic equation that models the evolution of gene frequencies under the joint action of migration and selection with a geographical barrier. The barrier locates at an embedded interface and is of Kedem-Katchalsky type. Our main goal is to investigate the role of the barrier on the existence of spatially nonconstant equilibrium and on the global dynamics. We shall explain how we overcome the difficulties caused by the interface condition in the related regularity issues and spectrum analysis.This is a joint work with Yantao Wang.

演讲人简介:苏琳琳于2010年在美国明尼苏达大学获得数学专业博士学位。曾先后在美国伍斯特理工学院做访问助理教授(2010-2013),在奥地利维也纳大学做博士后(2013-2014)。2014年加入南方科技大学,任助理教授。研究领域为偏微分方程和生物数学。


Boundedness in the higher-dimensional fully parabolic chemotaxis-competition systemwith loop

涂馨予

西南大学

报告摘要:In this talk, we consider the initial boundary value problem for a two-species chemotaxis system with loop. Based on a new coupled function, by selecting sufficiently large parameters, we show that the classical solution is globally bounded, which extends the previous result to the 3D setting.

演讲人简介:涂馨予,2019年毕业于重庆大学数统学院,偏微分方程方向,现为西南大学数统学院博士后。研究兴趣为非线性发展方程的相关问题,已在JDE、JDDE、DCDS、ZAMP、中国科学等期刊发表论文十余篇。