学术成果
研究院学术成果动态

数学科学研究院科研成果汇总:2015-2018


研究院科研团队成员自2015, 共发表110篇论文,其中97篇正式刊登发表,13篇接受待发表. 其中青年教师和研究生共发表70余篇,  约占总发表数量的65%.


论文中的相当一部分发表在基础数学的优秀杂志上, Memoirs of AMS,  JDE, CPDE, DCDS, CVPDE, JFA, JMPA, Ann. Inst. H. Poincaré Anal. Non Linéaire, Indiana University Math J.等。 同时也有相当一部分论文发表在应用数学优秀杂志,如PNAS, Nonliearity , SIAM J. Appl. Math., Journal of Scientific Computing PLoS ONE, BMC Systems Biology, Scientific reports, Cell Research, Bulletin of Math Biology, J. Theo. Biology, Structure, Oncotarget等期刊上。


具体情况如下:


2015年度

1. Yuan Lou, Wei-Ming Ni and Shoji Yotsutani,  Pattern formation in a cross-diffusion system, Discrete and Continuous Dynamical System - A, Vol. 35 (2015), 1589-1607.

2. Yihong Du,  Sze-Bi Hsu and Yuan Lou,  Multiple steady-states in phytoplankton population induced by photoinhibition, Journal of Differential Equations, Vol. 258 (2015), 2408-2434.

3. Yuan Lou, Peng Zhou,  Evolution of dispersal in advective homogeneous environments: The effect of boundary conditions, Journal of Differential Equations Vol. 259 (2015), 141-171.

4. Yuan Lou, Michael Winkler, Global Existence and Uniform Boundedness of Smooth Solutions to a Cross-Diffusion System with Equal Diffusion Rates, Comm. PDE, Vol. 40 (2015), 1905-1941.

5. King-Yeung Lam, Yuan Lou, Frithjof Lutscher,  Evolution of dispersal in closed advective environments, J. Biological Dynamics, Vol 9 (2015),  Supplement 1, 188-212.

6. Yuan  Lou, Some reaction diffusion models in spatial ecology (in Chinese), 中国科学:数学, Sci Sin Math, Vol. 45 (2015), 1619-1634.

7. E.A. Moberg, E. Shyu, Guillermo E. Herrera, S. Lenhart, Yuan Lou, M.G. Neubert,  On the Bioeconomics of Marine Reserves when Dispersal Evolves. Natural Resource ModelingVol. 28 (2015), 456-474.

8. Wenzhi Feng, Tong Wu, Xiaoyu Dan, Yuling Chen, Lin Li, She Chen, Di Miao, Haiteng Deng, Xinqi Gong, Li Yu, Phosphorylation of Atg31 is required for autophagy. Protein Cell 2015,6:288-296

9. Jiao Tang, Zhifu Han, Yadong Sun, Heqiao Zhang, Xinqi Gong and Jijie Chai. Sructural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research 2015, 25:110–120

10. T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differential Equations 258 (2015), 4275–4323.

11. T. Xiang,  On a class of Keller–Segel chemotaxis systems with cross-diffusion. J. Differential Equations 259 (2015), 4273–4326.

12. T. Xiang and R. Yuan, A note on Krasnosel`skii fixed point theorem,  Fixed Point Theory Appl. 2015, 2015:99, 8 pp.

13. Y. Wang, X. Cao,  Global classical solutions of a 3D chemotaxis-Stokes system. Discrete and Continuous Dynamical Systems-B, 2015, 204(9) 3235-3254.

14. Qiujin Peng, Hui Zhang and Zhengru Zhang. The Phase Transition Model for Heat-Shrinkable Thermo-Sensitive Hydrogels Based on Interaction Energy. Communications in Computational Physics, 17 (2015), 594-614.


2016年度

1. Y. Lou, D.M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical System - A,Vol. 36 (2016), 953-96

2. Hua Nie, Y. Lou and Jianhua Wu, Competition between two similar species in the unstirred chemostat. Discrete and Continuous Systems, Series B, Vol. 21 (2016), 621-639

3. K.Y. Lam, Y. Lou. Asymptotic behavior of the principal eigenvalue of cooperative system with applications. J. Dynamical and Differential Equations, Vol. 28 (2016), 29-48

4. O. Udiayi, Y. Lou and I. Hamilton. Stability analysis of male aggression levels in a coercive mating model,  Tamkang Journal of Mathematics, Vol. 47, No. 1 (2016), 93-107

5. K.-Y. Lam, Y. Lou and F. Lutscher. The emergence of range limits in advective environments. SIAM J. Appl. Math, Vol. 76 (2016), 641-662

6. R.H. Cui, Y. Lou. Spatial SIS epidemic models in advective environments, Journal of Differential Equations, Vol. 261 (2016), 3305-3343

7. Ma R, Han Z, Hu Z, Lin G, Gong Xinqi, Zhang H, Nasrallah JB, Chai J. Structural basis for specific self-incompatibility response in Brassica. Cell Research 2016 Dec;26(12):

8. Lu Gao, Xiafei Hong, Xiaopeng Guo, Xinqi Gong, Rongrong Chen, Wenying Qiu, Xiaojing Qiao, Jianjiao Ni, Xi Chen, Yanfang Guan, Ling Yang, Renzhi Wang, Yong Yao, Bing Xing. Targeted next-generation sequencing of dedifferentiated chondrosarcoma in the skull base reveals combined TP53 and PTEN mutations with increased proliferation index, an implication for pathogenesis. Oncotarget. 2016 July12; 7(28): 43557-43569.

9. Simiao Liu, Jizong Wang, Zhifu Han, Xinqi Gong, Heqiao Zhang, Jijie Chai. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure. 2016, 24(7):1192–1200.

10. 龚新奇,蛋白质分子模拟:原理和方法(第6 蛋白质结合位点预测),科学出版社,2016/3/1.

11. Xiang, Tian; Georgiev, Svetlin Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications. Math. Methods Appl. Sci. 39 (2016), no. 4, 833–863

12. Zhang, Ziheng; Xiang, Tian; Yuan, Rong, Homoclinic solutions for  p(t)-Laplacian–Hamiltonian systems without coercive conditions.  Mediterr. J. Math. 13 (2016), no. 4, 1589–1611

13.  Jin, Hai-YangXiang, Tian, Boundedness and exponential convergence in a chemotaxis model for tumor invasionNonlinearity2016.12.0129(12)3579~3596

14.  Xiulan Lai and Xingfu Zou, A Reaction diffusion system modeling virus dynamics and CTL response with chemotaxis, Disc. Cont. Dyn. Sys. B 21-8 (2016): 2567-2585.

15.  Xiulan Lai and Avner Friedman, Exosomal miRs in Lung Cancer: A Mathematical Model. PLoS ONE 11-12 (2016):  e0167706.  doi:10.1371/journal.pone.0167706

16.  Xinru Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z. Angew.Math. Phys. 67 (2016), no. 1, Art. 11, 13 pp.

17.  Xinru Cao, Johannes Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Paper No. 107, 39 pp.

18.  Xinru, Cao, Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term. J. Differential Equations 261 (2016), no. 12, 6883-6914.

19.  Hoang-Hung Vo, A spectral condition f or Liouville-type result of monostable KPP equation in periodic shear flows. Calc. Var. Partial Differential Equations 55 (2016), no. 2, 55:39.

20. Xinfu Chen, Bei Hu, Jin Liang, Yajin, Zhang, free boundary of numerical scheme for America option, DCDS-B, 21(2016), No.5, 1435-1444.

21. Jin Liang, Yuan Wu, Bei Hu, Asymptotic traveling wave solution for a credit rating migration problem, JDE, 261(2016), 1017-1045.


2017年度

1. R.S. Cantrell, C. Cosner Y. Lou, and S. Schreiber Evolution of natal dispersal in spatially heterogeneous environments, Math Biosciences, Vol. 283 (2017) 136-144

2. I. Averill, K.Y. Lam, Y. Lou, The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach. Memoirs of AMS, Vol. 245, Number 1161, 2017.

3. K.Y. Lam and Y. Lou, An integro-PDE model for evolution of random dispersal, Journal of Functional Analysis, Vol. 272, 1755-1790 (2017).

4. Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, Journal of Fixed Point Theory and its Applications, Vol. 19, 755-772 (2017).

5. Y. Lou, Youshan Tao, Michael Winkler, Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model, Journal of Differential Equations, Vol. 262, 5160-5178 (2017).

6. M. Golbuitsky, W.R. Hao, K.-Y. Lam, Y. Lou, The Analysis of Fitness Functions in Reaction-Diffusion-Advection Systems Using Singularity Theory, Bulletin of Mathematical Biology, Vol. 79, 1051-1069 (2017).

7. R.H. Cui, K.-Y. Lam, Y. Lou, Dynamics and Asymptotic Profiles of Steady States to an Epidemic Model in Advective Environments, Journal of Differential Equations, Vol. 263, 2343-2373 (2017)

8. Yaodan Huang, Zhengce Zhang, and Bei Hu, Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Analysis: Real World Applications 35 (2017), 483–502.

9. Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Mathematical Journal Vol. 47 (2017), 217—247

10. Xinqi Gong*, Tingyi Cao. Five Dimensional Feature Space for Protein Binding Site Residue Prediction. Journal of Beijing University of Technology 2017, 43(12):254-3712.

11. Wei Wang, Yongxiao Yang, Jianxin Yin*, Xinqi Gong*. Different protein-protein interface patterns predicted by different machine learning methods. Scientific Reports. 2017, 7:16023.

12. Yongxiao Yang, Xinqi Gong*. A new probability method to understand protein-protein interface formation mechanism at amino acid level. Journal of Theoretical Biology. 2017, doi:10.1016/j.jtbi.2017.09.026.

13. Zhenni Zhao, Xinqi Gong*. Protein-protein interaction interface residue pair prediction based on deep learning architecture. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2017, PP(99):1-1

14. Yongxiao Yang, Xinqi Gong*. Understanding Protein-Protein Interface Formation Mechanism in a New Probability Way at Amino Acid Level. Lecture Notes in Bioinformatics. 2017, doi: 10.1007/978-3-319-59575-7_36.

15. Fangfang Chen, Chunxiao Zhang, Haonan Wu, Yue Ma, Xiaomin Luo, Xinqi Gong, Fan Jiang, Yaoting Gui, Hui Zhang, Fei Lu*. The E3 ubiquitin ligase SCF FBXL14 complex stimulates neuronal differentiation by targeting the Notch signaling factor HES1 for proteolysis. Journal of Biological Chemistry. 2017, 292(49):jbc.M117.815001.

16. Sixue Ren, Antonella Caforio, Qin Yang, Bo Sun, Feng Yu, Xiaofeng Zhu, Jinjing Wang, Chao Dou, Qiuyu Fu, Niu Huang, Qiu Sun, Chunlai Nie, Shiqian Qi, Xinqi Gong, Jianhua He,Yuquan Wei, Arnold JM Driessen, Wei Cheng. Structural and mechanistic insights into the biosynthesis of CDP-archaeol in membranes. Cell Research. 2017,27(11).

17. Shulin Mou, Xiaoxiao Zhang, Zhifu Han, Jiawei Wang, Xinqi Gong, Jijie Chai*. CLE42 binding induces PXL2 interaction with SERK2. Protein Cell. 2017, DOI 10.1007/s13238-017-0435-1.

18. Shuaihua Gao, Yu Zhou, Weiwei Zhang, Wenhe Wang, You Yu, Yajuan Mu, Hao Wang, Xinqi Gong, Guojun Zheng, Yue Feng*. Structural insights into the γ-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans. Scientific Reports. 2017,7:44542.

19. Xinru Cao.  Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity,  Discrete and Continuous Dynamical Systems-B  22, (2017), 3369-3378

20. Qiujin Peng,  Zhonghua Qiao and Shuyu Sun.  Stability and convergence analysis of second-order schemes for a diffuse interface model with Peng-Robinson equation of state. Journal of Computational Mathematics, 35 (2017), 737-765.

21. Qiujin Peng. A convex-splitting scheme for a diffuse interface model with Peng-Robinson equation of state. Advances in Applied Mathematics and Mechanics, 9 (2017), 1162-1188.

22. Rong Liu, Xia Guo, Qiujin Peng, Le Zhang, Terence T Lao, Trevor Little, Jundong Liu and Eric Chan. Stratified body shape-driven shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of lower extremmities. Textile Research Journal, 0 (00) (2017), 1-21, doi: 10.1177/0040517517715094.

23. R.S. Cantrell, C. Cosner and K.-Y. Lam, Resident-invader dynamics in infinite dimensional dynamical systems, Journal of Differential Equations 263 (2017), 4565-4616

24. R.S. Cantrell, X. Cao, K.-Y. Lam, and T. Xiang, A PDE model for intraguild predation with cross diffusion, Discrete and Continuous Dynamical Systems B 22(2017), 3653-3661.

25. Xiulan Lai and Avner Friedman, Combination therapy for melanoma with BRAF/MEK  inhibitor and immune checkpoint inhibitor: A mathematical model, BMC Systems Biology 11(70), 2017.

26. Xiulan Lai and Avner Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS ONE 12(5): e0178479, 2017.

27. Xiulan Lai and Avner Friedman, Exosomal microRNA concentrations in colorectal cancer: A mathematical model, Journal of Theoretical Biology 415: 70-83, 2017.

28. Wei Wang, Wanbiao Ma, Xiulan Lai, Repulsion effect on superinfecting virus by infected cells for virus infection dynamic model with absorption effect and chemotaxis, Nonlin. Anal. Real World Appl. 33: 253-283, 2017.

29. Wei Wang, Wanbiao Ma, Xiulan Lai, A dffiusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis, Commun Nonlinear Sci Numer Simulat 42: 585-606, 2017.

30. Seonghak Kim, Baisheng Yan On Lipschitz solutions for some forward-backward parabolic equations. II: The case against Fourier, Calc. Var. Partial Differential Equations, Vol 56 , 2017.

31. Seonghak Kim On a gradient maximum principle for some quasilinear parabolic equations on convex domains, , Proc. Amer. Math. Soc., 145, 1203-1208, 2017.

32. Kristian Bredies, Hongpeng Sun* A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers, Journal of Optimization Theory and Applications, Springer, June 2017, Volume 173, Issue 3, pp 878–907.

33. W. Hao, K.-Y. Lam, Y. Lou, Concentration phenomena in an Integro-PDE model for evolution of conditional dispersal, Indiana University Math Journal, Vol. 272, 1755-1790 (2017).


2018年度


1. Yuan Lou,  Shanshan Chen, Junjie Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, Journal of Differential Equations, Vol. 264, 5333-5359 (2018)

2. Yuan Lou, Hua Nie, Yan`e Wang, Coexistence and bistability of a competition model in open advective environments, Math. Biosciences, Vol. 306, 10-19 (2018).

3. Yuan Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterre competition-diffusion-advection system in heterogeneous environments, Journal Mathematiques Pures Appliquees, Vol. 121, 47-82 (2019).

4. T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459 (2018), no. 2,1172–1200. (高引论文)

5. T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics. Nonlinear Anal. Real World Appl. 39(2018), 278–299.

6. T.Xiang, Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system. J. Math. Phys. 59 (2018), no. 8, 081502, 11 pp.

7. H. Jin and T. Xiang,  Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model. C. R. Math. Acad. Sci. Paris 356(2018), no. 8, 875–885.

8. T. Xiang, Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model. SIAM J. Appl. Math. 78 (2018), no. 5, 2420–2438.

9. H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 8, 3071–3085.

10. Xiulan Lai, Andrew Sti, RobertWesolowski, Carson III William E and Avner Friedman*, Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors, Proceedings of the National Academy of Sciences of the United States of America 115(21) 5534-5539, 2018.

11. Xiulan Lai, Anthony Brown and Chuan Xue*, A stochastic model for cargo accumulation in axons induced by a reduction of molecular motors, Journal of the Royal Society Interface, 15(148) pii: 20180430, 2018.

12. Avner Friedman and Xiulan Lai*, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE 13(2): 13(2): e0192449, 2018

13. Wanda Strychakski, Sarah Bryant, Baasansuren Jadamba, Erini Kilikian, Xiulan Lai, Leili Shahriyari, Rebecca Segal, Ning Wei, and Laura A. Miller*, Fluid dynamics of nematocyst prey capture, In: Radunskaya A., Segal R., Shtylla B. (eds) Understanding Complex Biological Systems with Mathematics. Association forWomen in Mathematics Series, vol 14. Springer, Cham, 123-144 (2018).

14. Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou*, Role of white-tailed deer in geographic spread of the blacklegged tick Ixodes scapularis: analysis of a spatially nonlocal model, Mathematical Biosciences and Engineering, 15(4): 1033-1054, 2018.

15. Qi`an Guan, Zhenqian Li, Analytic adjoint ideal sheaves associated to plurisubharmonic functions, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Vol. XVIII (2018), 391-395.

16. Qi`an Guan, Zhenqian Li, A characterization of regular points by Ohsawa-Takegoshi extension theorem, Journal of the Mathematical Society of Japan, Volume 70, Number 1 (2018), 403-408.

17. Zhuomaji and Xinqi, G. Natural distinct inter-preference between genetic codon and protein secondary structure combinations." Communications in Information and Systems. Volume 18, No. 4 (2018).Pages: 331 – 347

18. Fu, M. , Wu, W. , Hong, X. , Liu, Q. , Jiang, J. , & Ou, Y. , et al. (2018). Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images. BMC Systems Biology, 12(S4), 56.

19. Yang, Y. , Wang, W. , Lou, Y. , Yin, J. , & Gong, X. . (2018). Geometric and amino acid type determinants for protein-protein interaction interfaces. Quantitative Biology, 6(2).

20. Ni, Z. , Chun, W. , Lichao, C. , Huanjie, Y. , Jian, F. , & Xinqi, G. , et al. (2018). S -nitrosylation targets gsno reductase for selective autophagy during hypoxia responses in plants. Molecular Cell, S1097276518303988-.

21. Jingzhi Li, Hongyu Liu, Hongpeng Sun, On a gesture-computing technique using electromagnetic waves,  Inverse Problems and Imaging, June 2018, 12(3), pp. 677–696. doi: 10.3934/ipi.2018029

22. Jongshenq Guo and Bei Hu, Quenching rate for a nonlocal problem arising in the micro-electro mechanical system, Journal of Differential Equations, Vol. 264. issue 5, pp. 3285-3311, 2018.

23. Wenrui Hao, Bei Hu, Shuwang Li, and Lingyu Song, Convergence of boundary integral method for a free boundary system, Journal of Computational and Applied Mathematics, Vol. 334, pp. 128-157, 2018

24. Xinru Cao, Shunsuke Kurima,  Masaaki Mizukami. Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kineticsMath. Methods Appl. Sci. , Vol. 41, issue 8, pp 3138-3154.

25. Xinru Cao, Michael Winkler. Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proceedings of the Royal Society of Edinburgh: Section A, Vol. 148, issue 5, pp. 939-955, 2018.

26. Seonghak Kim, Baisheng Yan , On Lipschitz solutions for some forward-backward parabolic equations , Ann. Inst. H. Poincaré Anal. Non Linéaire , Vol. 35, issue 1, pp. 65-100

27. R.S. Cantrell, C. Cosner, and X. Yu, Dynamics of populations with individual variation in dispersal on bounded domains, Journal of Biological Dynamics, vol.  12, issue 1, pp. 288-317, 2018.

28.On an inverse elastic wave imaging scheme for nearly incompress-ible materials, Jingzhi Li, Hongyu Liu, Hongpeng Sun*, IMA Journal of AppliedMathematics,2018,

      https://doi.org/10.1093/imamat/hxy056.





正式接受、待发表 (papers accepted, yet to be appear)



1. R. S. Cantrell, C. Cosner, Yuan Lou, M. A. Lewis,  Evolution of dispersal in spatial population models with multiple timescales. Journal of Mathematical Biology, accepted.

2. X. He,  K.Y.Lam, Yuan Lou, and W.-M. Ni, Dynamics of a Consumer-Resource Reaction-Diffusion Model: Homogeneous vs. Heterogenous Environments, Journal of Mathematical Biology, accepted.

3. Rui Li, Y. Lou, Some monotone properties for solutions to a reaction-diffusion model, Discrete Continuous Dynamical Systems, Series B, accepted for publication

4. H. Jin and T. Xiang, Convergence rate of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B,doi:10.3934/dcdsb.2018249.  to appear

5. H. Li, R. Peng and T.Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., doi:10.1017/S0956792518000463, to appear.

6. K. Lin and T. Xiang, on global solutions and blow-up for a short-ranged chemical signaling loop, Journal of Nonlinear Science, pp. 1-41, https://doi.org/10.1007/s00332-018-9494-6, to appear.

7. Avner Friedman* and Xiulan Lai, Free boundary problems associated with cancer treatment by combination therapy, Discrete and Continuous Dynamical Systems - Series B, accepted, 2018.

8. Xiulan Lai* and Avner Friedman, Mathematical modeling in scheduling cancer treatment with combination of VEGF inhibitor and chemotherapy drugs, Journal of Theoretical Biology, accepted, 2018.

9. Qi`an Guan, Zhenqian Li, Jiafu Ning,Uniform support function of the weighted L2 integrations with optimal asymptoticity, Annali di Matematica Pura ed Applicata, published online. DOI Number: 10.1007/s10231-018-0807-z.

10. On an inverse elastic wave imaging scheme for nearly incompressible materials, Jingzhi Li, Hongyu Liu, Hongpeng Sun, IMA Journal of Applied Mathematics, 2018, https://doi.org/10.1093/imamat/hxy056.

11. I. Takagi and H. Yamamoto, Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem, Indiana University Mathematics Journal, accepted

12. Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu, Steady states of FitzHugh-Nagumo system with non-diffusive activator and diffusive inhibitor, Tohoku Mathematical Journal, accepted.

13. Jing-Jing Xiang, Yihao Fang, Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete & Continuous Dynamical System,B, accepted, doi: 10.3934/dcdsb.2018245