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Abstract. This review describes reaction-advection-diffusion models for
the ecological effects and evolution of dispersal, and mathematical meth-
ods for analyzing those models. The topics covered include models for a
single species, models for ecological interactions between species, and models
for the evolution of dispersal strategies. The models are all set on bounded
domains. The mathematical methods include spectral theory, specifically the
theory of principal eigenvalues for elliptic operators, maximum principles and
comparison theorems, bifurcation theory, and persistence theory.

1. Introduction

Dispersal is an important aspect of the life histories of many, perhaps most,
organisms. It allows individuals to find and interact with resources and with
members of their own and other species, and allows populations to distribute
themselves across space. Thus, it influences the persistence of populations and
mediates interactions between populations such as predation and competition.
The ecological effects of dispersal have consequences for the fitness of individ-
uals and for the outcomes of interactions between different species, or different
subspecies of a given species. As a result, the ecological effects of dispersal cre-
ate selective pressures that influence the evolution of dispersal strategies. There
are many approaches that have been used to model the process of dispersal and
its ecological effects and evolution. One common approach is to use reaction-
advection-diffusion equations and their generalizations. That approach can be
technically challenging, but it has the advantage of being mechanistic in that
the details of the dispersal behavior of individuals can be scaled up to derive
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the equations describing dispersal at the level of population densities, and those
equations can be used to build systems of equations describing interactions be-
tween populations. Thus, reaction-advection-diffusion models can explain how
the dispersal behavior of individuals influences the ecological interactions of
populations, and in turn how those ecological interactions impose forces of evo-
lutionary selection on the behavior of individuals. This review will discuss the
derivation, analysis, and interpretation of such models. It will be focused on the
dynamics of populations inhabiting finite regions. It will not address the spread
of populations through infinite regions, as in the case of traveling waves in bio-
logical invasions, or the formation of patterns arising from Turing instabilities or
related mechanisms. The topics treated will include derivations of models from
assumptions about individual movement behavior, mathematical background
on methods for analyzing the models, and results about various specific ecolog-
ical and evolutionary questions. The exposition assumes that readers will have
a good knowledge of real analysis and some familiarity with partial differential
equations, specifically the Laplace equation and the heat or diffusion equation.
Many of the results and their proofs will involve eigenvalues of elliptic operators
on bounded domains. Some will involve ideas from bifurcation theory or the the-
ory of dynamical systems. Additional background material and technical details
are discussed in [13]. The material is organized into sections on single species
models, models addressing ecological issues for interacting species, and models
addressing issues related to the evolution of dispersal. The last section gives
a brief description of some alternatives to reaction-advection-diffusion models,
namely discrete diffusion models and intergro-differential models.

2. Single species models

In the formulation of reaction-diffusion-advection models, three different lev-
els of scaling are involved: the micro scale, the meso scale and the macro scale.
At the micro scale, individuals engage in random (diffusive) or directed (ad-
vective) movement between adjacent patches. The details determine dispersal
strategies, which are reflected in the forms of the corresponding advection and
diffusion equations at the meso scale. At the meso scale, combining movement
models with models for population dynamics and interactions between species
leads to reaction-diffusion-advection models for population disperal, which de-
scribe population distribution and dynamics. These models describe ecological
processes. At the macro scale, the outcomes of ecological processes determine
the direction of evolution. In particular, evolution can act on dispersal strate-
gies. Some dispersal strategies exclude others, some combinations can coexist
and some strategies are evolutionarily stable. Questions naturally arise as fol-
lows: What forms of meso scale dispersal are feasible given specific micro scale
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behavior? How does the form of meso scale dispersal affect population dynam-
ics and interactions? What forms of meso scale dispersal within a feasible class
will be stable versus invasion or evolution at the macro scale? And so on. For
example, the following system describes the densities u and v of two competing
populations which are ecologically similar but have different dispersal strategies:

ut = ∇[du∇u− αu∇m] + (m− u− v)u in Ω× (0, T ),

vt = dv∇2v + (m− u− v)v in Ω× (0, T ),

[du∇u− αu∇m] · ~n = ∇v · ~n = 0 on ∂Ω× (0, T )

with nonnegative initial values, where Ω is a smooth bounded domain in RN

and ~n is the unit outer normal vector on the boundary ∂Ω. The first competitor
moves by a combination of random diffusion and directed movement, while the
second moves only by random diffusion. Those movement patterns lead to
the forms of diffusion and advection terms in the model. It is proved in [15]
that if du = dv and α > 0 is small, then u excludes v. However if du and
dv are fixed, α >> 0, then u and v can coexist. Thus the model suggests that
populations using strategies with no advection or high advection can be invaded
by populations using other strategies, so strategies with no advection or high
advection would be predicted to be unstable relative to evolution. These sorts of
ideas will be explored in more detail in what follows, starting with descriptions
of how assumptions about movement at the micro scale determine the structure
of models at the meso scale.

2.1. Model formulation: dispersal and dynamics. Now let us briefly go
through the formulation of different kinds of dispersal at the micro scale in one
dimension [73]. Let u(x, t) and J denote the density and flux, respectively, of a
population at the location x and time t. Generally, according to Fick’s law,

∂u

∂t
= − ∂

∂x
J.

For simple diffusion, at each time step ∆t, individuals move randomly from
x−∆x to x or x to x−∆x at the same rate p0(x), hence

J =
1

∆t
p0(x)[u(x−∆x, t)∆x− u(x, t)∆x]

=
(∆x)2

∆t
p0(x)

[
u(x−∆x, t)− u(x, t)

∆x

]
.

We let ∆x and ∆t go to zero with the standard diffusive scaling

(2.1)
(∆x)2

∆t
= D0,
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which immediately yields that

lim
∆x,∆t→0

J = −D(x)
∂u

∂x
,

where D(x) = D0p0(x). Thus we have

(2.2)
∂u

∂t
=

∂

∂x

(
D(x)

∂u

∂x

)
.

If the dispersal probability depends on departure point, then

J =
1

∆t
[p1(x−∆x)u(x−∆x, t)∆x− p1(x)u(x, t)∆x]

=
(∆x)2

∆t

[
p1(x−∆x)u(x−∆x, t)− p1(x)u(x, t)

∆x

]
.

Again by the diffusive scaling (2.1), it follows that

lim
∆x,∆t→0

J = − ∂

∂x
(D(x)u),

where D(x) = D0p1(x) with D0 given by (2.1). This yields

(2.3)
∂u

∂t
=

∂2

∂x2
(D(x)u) .

If the dispersal probability depends on arrival point, then

J =
1

∆t
[p2(x)u(x−∆x, t)∆x− p2(x−∆x)u(x, t)∆x]

=
(∆x)2

∆t
p2(x)p2(x−∆x)

1

∆x

[
u(x−∆x, t)

p2(x−∆x)
− u(x, t)

p2(x)

]
.

As in the previous cases, we derive that

lim
∆x,∆t→0

J = −D2(x)
∂

∂x

(
u

D(x)

)
,

where D(x) = D0p2(x) and D0 is given in (2.1), and thus

(2.4)
∂u

∂t
=

∂

∂x

[
D2(x)

∂

∂x

(
u

D(x)

)]
.

Also, we can obtain the equation when the dispersal probability depends on
both departure (p1(x)) and arrival (p2(x)) points using similar arguments. In
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this situation,

J =
p1(x−∆x)p2(x)u(x−∆x, t)∆x− p1(x)p2(x−∆x)u(x, t)∆x

∆t

=
(∆x)2

∆t

p2(x)p2(x−∆x)

∆x

[
p1(x−∆x)u(x−∆x, t)

p2(x−∆x)
− p1(x)u(x, t)

p2(x)

]
.

Then letting ∆x, ∆t→ 0, we get

J → −D2
2(x)

∂

∂x

(
D1(x)

D2(x)
u(x)

)
,

where D1(x) = D
1/2
0 p1(x), D2(x) = D

1/2
0 p2(x), D0 is given in (2.1), and thus

(2.5)
∂u

∂t
=

∂

∂x

[
d2(x)

∂

∂x
(d1(x)u)

]
,

where d1(x) = D1(x)/D2(x) and d2(x) = D2
2(x). Since d1(x) and d2(x) are

allowed to be any positive functions, the model (2.5) generalizes all the previous
models (2.2), (2.3) and (2.4).

The last model is about a different form of dispersal: advection. The flux is
given by

J =
1

∆t
[q(x−∆x)u(x−∆x, t)∆x].

By letting ∆x, ∆t → 0, we have J → e(x)u(x), where the advection scaling is
∆x/∆t = e0 and e(x) = e0q(x). Hence the model is

(2.6)
∂u

∂t
= − ∂

∂x
(e(x)u(x)).

Note that the advective scaling is different from the diffusive scaling.
In these models (2.2)–(2.6) mentioned above, D(x), di(x), i = 1, 2, or e(x)

could also depend on t, u or densities of other species in multi-species models.
When it comes to higher dimensions, ∇ replaces ∂/∂x and ~e(x) becomes a
vector. It is also worth pointing out that some forms of dispersal have more than
one possible mechanism. For example, in the model (2.3) in higher dimensions,

∇2(D(x)u) = ∇ · [D(x)∇u] +∇ · [u∇D(x)].

The term on the left hand side would arise from diffusion depending on the
departure point. On the right hand side, the first term is from simple diffusion
while the second term represents advection down the gradient of D(x). Thus
there are two different mechanisms at the micro scale that could produce the
same model at the meso scale.

From the biological point of view, advection can arise either from the behavior
of individuals or from physical transport processes, such as winds, currents in
rivers, and so on. Advection arising from behavior is likely to occur in response
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to gradients of environmental variables or population densities. However, physi-
cal advection does not necessarily arise in response to gradients. This distinction
can be important in analyzing models, because models where advection arises
from a gradient can often be converted into a symmetric (that is, variational
or formally self-adjoint) form by a change of variables. In modeling, simple
diffusion and diffusion based on departure point are most commonly used. For
example, cross-diffusion models usually use diffusion based on departure point.
Generally, there are two methods that organisms may use to follow resources:
kinesis and taxis. To be more specific, kinesis refers to changes in the rate of
random, undirected motion in response to a stimulus, such as a reduction of
diffusion rate in favorable locations, whereas taxis is a specific, directed motion
in response to a stimulus, such as advection along environmental gradients.

Next, we want to use the following single species model to talk about the
dynamics at the meso scale:

(2.7) ut = ∇ · [d2(x)∇(d1(x)u)− u~e(x)] + f(x, u)u in Ω× (0,∞),

with nonnegative initial values and usually with no flux boundary conditions,
but sometimes with other boundary conditions . In some cases, f , ~e or di,
i = 1, 2 may also depend on t or u. In this model, f(x, u) represents the
local rate of reproduction per individual, in other words, per capita population
growth rate. The evolutionary interpretation of f(x, u) is the average fitness of
individuals at location x with density u. The most common form of f is the
logistic form: f(x, u) = A(x)−B(x)u, where B(x) > 0, A(x) may change signs.
In ecology, if A(x) > 0, the common notation is

f(x, u) = r(x)

(
1− u

K(x)

)
,

where r(x) = A(x) is local rate of population growth at low density and K(x) =
A(x)/B(x) denotes maximum density supported locally by resources available,
that is, carrying capacity. However, that formulation only makes sense when
A(x) > 0. In spatial models, the form f(x, u) = m(x) − u is very common. If
B(x) is constant the logistic model can always be rescaled into that form. In
some cases, an open question is whether models using the more general form
f(x, u) = A(x)−B(x)u behave like those using f(x, u) = m(x)− u.

Let us take a look at a simple example of a logistic model, namely

(2.8)

{
d∇2u+ (m(x)− u)u = 0 in Ω,

∇u · ~n = 0 on ∂Ω.

Assume that m(x) > 0 is nonconstant. According to this assumption, plentiful
resources are available. It is proved in [68] that there exists a unique positive
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solution u(x) for all d > 0. Then a question is how diffusion affects the total
population

∫
Ω
u(x)dx. When d > 0, using (2.8), it is easy to check that the

total population satisfies∫
Ω

u(x)dx = d

∫
Ω

|∇u|2

u2
dx+

∫
Ω

m(x)dx >

∫
Ω

m(x)dx.

Here we use a simple fact that u(x) cannot be constant since m(x) is noncon-
stant. Therefore, diffusion increases population. Moreover, among other things,
it is proved in [68] that

lim
d→0+

∫
Ω

u(x)dx =

∫
Ω

m(x)dx,

and

lim
d→∞

∫
Ω

u(x)dx =

∫
Ω

m(x)dx.

This tells us that the total population has a global maximum for some 0 < d <
∞. Regarding the total population, biologically it seems interesting to further
investigate the following open questions. How do the number and location of
the local maxima for the total population relative to d depend on Ω and m(x)?
What happens in the more general case ∇2u + (A(x) − B(x)u)u = 0? How
about cases with variable diffusion or advection? And so on. We also want to
point out that population size is not necessarily the most important thing to
optimize for evolutionary advantage. We will come back to this issue later with
many more details.

An alternative to logistic models are models with Allee effects [1]. A popu-
lation with logistic growth has its largest per capita population growth rate at
zero population density. In contrast, if the growth rate per capita increases at
low density, the population is said to have an Allee effect. In other words, at
low population densities, Allee effects lead to reduced reproduction or survival.
If the Allee effect is strong, population growth will actually be negative when
individuals become rare. A typical nonspatial model for a single species with
Allee effect is

du

dt
= f(u)u = r

(
1− u

K

)
(u− a)u, 0 < a < K.

It is easy to see that in this model, if the population density u is below the low
density equilibrium u = a, the species slides into extinction. Allee effects can
also arise from spatial effects and interactions between species.

2.2. Eigenvalue methods. A basic ecological question is how dispersal, prop-
erties of the environment (size, shape, etc.), and the distribution of resources
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affect population growth or decline. Let us first provide a mathematical formu-
lation of this problem using the model (2.7) with f(x, u) = m(x)− u:{

ut = ∇ · [d2(x)∇(d1(x)u)− u~e(x)] + (m(x)− u)u in Ω× (0,∞),

[d2(x)∇(d1(x)u)− u~e(x)] · ~n+ b(x)u = 0 on ∂Ω× (0,∞).

It is known that the linear growth or decline in populations at u = 0 is de-
termined by the sign of principal eigenvalue σ0 of the linearized problem at
u = 0:

(2.9)

{
∇ · [d2(x)∇(d1(x)ψ)− ψ~e(x)] +m(x)ψ = σψ in Ω,

[d2(x)∇(d1(x)ψ)− ψ~e(x)] · ~n+ b(x)ψ = 0 on ∂Ω.

If σ0 > 0, then u = 0 is unstable and thus the population grows exponentially
at the rate of eσ0t. If σ0 < 0, then u = 0 is stable and the population decays
exponentially. Therefore, the basic ecological question can be rephrased as how
σ0 depends on di(x), i = 1, 2, m(x), ~e(x), b(x) and the domain Ω.

For the convenience of readers, let us briefly summarize some known results
regarding the principal eigenvalue σ0 of (2.9). Instead of (2.9), we consider a
more general eigenvalue problem

(2.10) Lψ = σψ in Ω, Bψ = 0 on ∂Ω,

where

Lψ =
N∑

i,j=1

aij(x)
∂2ψ

∂xi∂xj
+

N∑
i=1

ai(x)
∂ψ

∂xi
+ a0(x)ψ,

L is strongly elliptic, aij = aji, aij ∈ C(Ω), ai, a0 ∈ L∞(Ω), with either Bψ = ψ
or Bψ = ∂ψ/∂n + b0(x)ψ, b0 ∈ C(∂Ω), b0 ≥ 0. It is known ([7]) that the
eigenvalue problem (2.10) has a unique principal eigenvalue σ0 with Re σ < σ0

for any other eigenvalue σ. If Bψ = ∂ψ/∂n + b0(x)ψ then we could choose
ψ > 0 in Ω. If Bψ = ψ, then we may choose ψ > 0 in Ω with ∂ψ/∂n < 0 on ∂Ω.
Furthermore, no other eigenvalues have positive eigenfunctions. If aij ∈ C2(Ω),
ai ∈ C1(Ω), then based on the Krein-Rutman theorem, σ0 is also the principal
eigenvalue for the adjoint problem

L∗ψ∗ = σψ∗ in Ω, B∗ψ∗ = 0 on ∂Ω.

Moreover, it is proved ([2, Theorem 2.4]) that the following assertions are equiv-
alent:

(i) σ0 < 0;
(ii) (L,B,Ω) possesses a positive strict supersolution;
(iii) (L,B,Ω) satisfies the strong maximum principle.
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Another observation, going back to the problem (2.9), is that if there exists p(x)
such that ∇p = ~e/(d1d2), then by setting w = d1e

−pψ, the problem (2.9) can
be rewritten as

∇ · [d2(x)ep∇w] +
m(x)

d1(x)
epw = σ

1

d1(x)
epw in Ω,

∇w · ~n+
b(x)

d1(x)d2(x)
w = 0 on ∂Ω.

Hence the variational formula can be applied to characterize σ0. This is some-
times useful in models with advection on environmental gradients. ( See also
[13], section 2.2.)

Instead of (2.10), sometimes one also needs to consider the weighted eigen-
value problem

(2.11) Lφ+ λm(x)φ = 0 in Ω, Bφ = 0 on ∂Ω,

where

Lφ =
N∑

i,j=1

aij(x)
∂2φ

∂xi∂xj
+

N∑
i=1

ai(x)
∂φ

∂xi
.

If m(x) is positive and suitably smooth, results similar to those for the problem
(2.10) can be obtained by the Krein-Rutman theorem. If m(x) changes sign,
similar results can still be proved by considerably different techniques.

Theorem 2.1 ([46]). Under Dirichlet boundary conditions, suppose that m(x0) >
0 for some x0 ∈ Ω. Then (2.11) admits a principal eigenvalue λ0 characterized
by being the unique positive eigenvalue having a positive eigenfunction. Further-
more, for any other eigenvalue λ with Re λ > 0, Re λ > λ0.

Under Neumann boundary conditions, note that 0 is a trivial eigenvalue with
the eigenfunction φ = 1. It can be shown by methods based on the Krein-
Rutman theorem that 0 is also an eigenvalue of the adjoint operator L∗ with
an eigenfunction that can be chosen to be positive. Let φ∗ denote the positive
eigenfunction corresponding to the trivial eigenvalue of the adjoint operator L∗.
Among other things, the following result is proved in [76]:

Theorem 2.2. Under Neumann boundary conditions, if
∫

Ω
m(x)φ∗(x)dx 6= 0,

there is a unique eigenvalue λ0 6= 0 of (2.11) having a positive eigenfunction.

The sign of λ0 is opposite to the sign of
∫

Ω
m(x)dx.

The two eigenvalue problems (2.10) and (2.11) with a0(x) = m(x) are closely
related. When λ0 > 0 in (2.11) it is typically the case that σ0 < 0 in (2.10)
if and only if λ0 > 1 in (2.11). See for example [13], Corollary 2.18, and the
related discussion. Some calculations for the principal eigenvalue λ0 of (2.11)
are simpler than the corresponding ones for σ0.
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For example, consider a particular case

(2.12)

{
∇ · [d∇u− αu∇m] + (m(x)− u)u = 0 in Ω,

[d∇u− αu∇m] · ~n = 0 on ∂Ω.

Assume that d > 0 and α ≥ 0 are constants and m(x) ∈ C3(Ω),
∫

Ω
m(x)dx < 0,

m(x0) > 0 for some x0 ∈ Ω. Because of the introduction of the advection term
αu∇m, the population may have a tendency to move along the gradient of
m(x) in addition to random dispersal and thus may concentrate near favorable
environment. A natural ecological question is whether the movement in the
direction of m(x) is always beneficial. To study this question, consider the
following two types of eigenvalue problems

(2.13)

{
∇ · [d∇ψ − αψ∇m] +mψ = σ(α)ψ in Ω,

[d∇ψ − αψ∇m] · ~n = 0 on ∂Ω,

and

(2.14)

{
∇ · [d∇φ− αφ∇m] + λ(α)mφ = 0 in Ω,

[d∇φ− αφ∇m] · ~n = 0 on ∂Ω.

Let σ0(α) and λ0(α) denote the principal eigenvalues of (2.13) and (2.14) re-
spectively. It is known that the model (2.12) predicts persistence if σ0(α) > 0
and σ0(α) > 0 ⇔ λ0(α) < 1 if λ0(α) > 0 exists. According to [5], λ0(α) < 1
(⇔ σ0(α) > 0) for α large enough, which means that sufficiently rapid move-
ment in the direction of m(x) is always beneficial. In [25], among other things,
it is proved that

dλ0

dα

∣∣∣
α=0

< 0,

if Ω is convex. This tells us that if α > 0 is small, movement in the direction
of increasing environmental quality benefits the population in convex domains,
while counterexamples exist in certain non-convex domains. The effects of the
advection term αu∇m also depend critically on boundary conditions. See [5]
and [25] for details.

Besides the model (2.12), there are other mechanisms that could concen-
trate populations near regions of favorable habitat. Examples include Lu =
∇2(d(γm(x))u), where d(z) > 0, d′(z) < 0, or Lu = ∇ · [d∇u − γu∇P (m(x))]
where P ′(z) > 0. In the first case, the movement rate decreases in favorable
regions, while in the second one, the movement is still in the direction of in-
creasing m(x), but at a rate depending on m(x). The parameter γ measures
how sensitive the dispersal strategy is to environmental conditions. In these
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cases, an open question related to the eigenvalue problems

Lψ +m(x)ψ = σψ in Ω, Bψ = 0 on ∂Ω,

and

Lφ+ λm(x)φ = 0 in Ω, Bφ = 0 on ∂Ω,

is how the principal eigenvalues σ0, λ0 depend on the parameter γ.
Recall that in section 2.1, we used the model (2.8) to discuss the optimization

of population size when there are abundant resources (m(x) > 0). Now we want
to make use of eigenvalue methods to study the optimal habitat arrangement for
population persistence when resources are limited. Let us present the question
mathematically first. Consider the problem

(2.15) d∆u+ (m(x)− u)u = 0 in Ω, Bu = 0 on ∂Ω,

where Bu = u or Bu = ∂u/∂n+ b0(x)u, b0(x) ≥ 0, suppose that

(2.16) −m1 ≤ m(x) ≤ m2,

∫
Ω

m(x)dx ≤ m0,

where the constants m1 > 0, m2 > 0, m0 are given and m0 < 0 in the Neumann
case. Let λ0(m) be the principal eigenvalue of

∆φ+ λm(x)φ = 0 in Ω, Bφ = 0 on ∂Ω.

The assumptions on m imply that λ0(m) > 0. Let d∗ = 1/λ0(m). It is known
that if d > d∗ then u = 0 is linearly stable and (2.15) has no positive solutions,
while u = 0 is linearly unstable and (2.15) has a unique positive solution for
0 < d < d∗. ( See for example [10, 12] or [13], section 3.4.) Hence the problem
of determining what choice of m(x) satisfying (2.16) is optimal for population
persistence is equivalent to maximizing d∗, which is equivalent to minimizing
the principal eigenvalue λ0(m). For both Dirichlet and Neumann boundary
conditions, it has been shown that the minimizer of λ0(m) exists and it is of
bang-bang type, i.e., for some set E ⊂ Ω,

m(x) = m2χE −m1χΩ\E,

where m2|E| − m1|Ω \ E| = m0. The location of E depends critically on the
boundary conditions. In the one dimensional case, for the Dirichlet problem,
m(x) is positive in the central part of Ω and negative near the boundary, while
for the Neumann problem, m(x) is positive on one side of the interval and neg-
ative on the other side. See [10], [11] and [69] for details. In higher dimensional
cases, a partial analytic characterization of the set E for the Dirichlet problem
is obtained in [10]. For the Neumann problem in higher dimensions some nu-
merical results about the set E are obtained in [54] and [74], but the question of
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obtaining an analytic characterization of E for the Neumann problem in higher
dimensions is open.

Finally, we want to talk about models in time varying environments and the
related eigenvalue problems. Define

Lu = ∂u/∂t−A(t)u,

where

A(t)u =
N∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

N∑
i=1

ai(x, t)
∂u

∂xi
+ a0(x, t)u.

Assume that A(t) is uniformly strongly elliptic, all coefficients are smooth and
T−periodic in t. Under these assumptions, it is proved in [45], [62] that the
problem

Lψ = ρψ in Ω× R, Bψ = 0 on ∂Ω× R
where Bψ = u or Bψ = ∂u/∂n + b0(x)u, b0 ≥ 0, has a principal eigenvalue ρ0

characterized by having a positive eigenfunction. If the coefficients of A do not
depend on t then ρ0 = −σ0 where σ0 is the principal eigenvalue of

Aψ = σψ.

Moreover, for any other eigenvalue ρ, Re ρ ≥ ρ0. The main questions in time
varying environments are analogous to those in the time-independent case: the
effects of advection, variable diffusion, etc. on the principal eigenvalue ρ0. Not
much is known in this direction. One estimate is as follows: assume that the
coefficients aij and ai in the operator A(t) are independent of t. Define another
operator

Âu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
i=1

ai(x)
∂u

∂xi
+ â0(x)u

with

â0(x) =
1

T

∫ T

0

a0(x, t)dt.

In [52], the authors show that ρ0 ≤ ρ̂0 where ρ0 and ρ̂0 are the principal eigen-
values of

∂ψ/∂t−A(t)ψ = ρψ in Ω× R, Bψ = 0 on ∂Ω× R
and

∂φ/∂t− Âφ = ρ̂φ in Ω× R, Bφ = 0 on ∂Ω× R
respectively. (Since the coefficients of Â do not depend on t we have ρ̂0 = −σ̂0

where σ̂0 is the principal eigenvalue for Âψ = σψ.) A few other estimates
for principal eigenvalues of periodic-parabolic operators are given in [45, 51]
but for the general problem of estimating ρ0 or for more specific problems of
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determining how ρ0 depends on parameters or coefficients such as diffusion or
advection rates in particular cases there remain many open questions.

2.3. Bifurcation theory and applications. As mentioned before, a realistic
improvement in modeling dispersal is to add density dependence. In principle,
any coefficient in a reaction-advection-diffusion model or its boundary condi-
tions could depend on population density, leading to models of the form

ut = ∇ · [d2(x, u)∇(d1(x, u)u)− u~e(x, u)] + f(x, u)u in Ω× (0,∞),

with the boundary condition

α(x, u)[d2(x, u)∇(d1(x, u)u)− u~e(x, u)] · ~n+ (1− α(x, u))u = 0

on ∂Ω × (0,∞), where α(x, u) ≥ 0. It is known that for linear dispersal and
boundary conditions, with f(x, u) of logistic type, in many cases, either there
is no positive equilibrium and u = 0 is globally stable among nonnegative solu-
tions, or there is a unique positive equilibrium which is globally stable. See [13],
chapter 3. However, when the dispersal is density dependent, properties of solu-
tions may be dramatically different and bifurcation theory is a useful tool in this
case. There are two major types of bifurcation results, namely local and global.
Local bifurcation results give a detailed description of all of the solutions to a
given problem in a neighborhood of the bifurcation point. Global bifurcation
results describe the behavior of bifurcating branches of solutions both near the
bifurcation point and far away from it, and sometimes can give a description of
the full set of solutions for large regions of parameter space, but usually with
less detail than local results. Here we will use local bifurcation theory to study
a model with density-dependent diffusion. For a treatment of global bifurcation
as it applies to the quasilinear elliptic systems that describe equilibria of models
for interacting species with cross diffusion or other forms of density-dependent
diffusion or advection, see [78] and the references in that paper.

Here is an important and fundamental result in local bifurcation theory due
to Crandall and Rabinowitz :

Theorem 2.3 ([30]). Suppose that X and Y are Banach spaces, (a, b) × V ⊂
R × X, 0 ∈ V is open, and F : (a, b) × V → Y is twice differentiable with
F(λ, 0) = 0 for λ ∈ (a, b). Suppose that for some λ0 ∈ (a, b), DxF(λ0, 0) has 0
as a simple eigenvalue and x0 ∈ X spans N(DxF(λ0, 0)). Suppose further that
DλxF(λ0, 0)x0 /∈ R(DxF(λ0, 0)). Let W ⊂ X be any complement of span{x0}.
Then in a neighborhood of (λ0, 0), the solution set of F(λ, x) = 0 consists of
a trivial curve (λ, x) = (λ, 0) and a curve (λ, x) = (λ(s), sx0 + sρ(s)) with
λ(0) = λ0, ρ(0) = 0 and ρ(s) ∈ W. If F is smooth, then so are λ(s) and ρ(s).
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In the following example, let us use bifurcation theory to investigate how
nonlinear dispersal affects the behavior of solutions in a model with density-
dependent diffusion. Consider

(2.17)

{
ut = d1∇ · [d2(x, u)∇u] + (m(x)− u)u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞).

Let λ = 1/d1 and the equilibrium equation becomes

∇ · [d2(x, u)∇u] + λ(m(x)− u)u = 0.

Denote X = {u ∈ C2+α(Ω) : u = 0 on ∂Ω}, Y = Cα(Ω) and define F : R×X→
Y as F(λ, u) = ∇ · [d2(x, u)∇u] + λ(m(x)− u)u. Direct calculation gives that

DuF(λ, u)φ = ∇ ·
[
∂d2

∂u
(x, u)φ∇u+ d2(x, u)∇φ

]
+ λ(m(x)− 2u)φ,

and DλuF(λ, u)φ = m(x)φ. Clearly,

DuF(λ, 0)φ = ∇ · [d2(x, 0)∇φ] + λm(x)φ.

Assume that the weighted eigenvalue problem

(2.18) ∇ · [d2(x, 0)∇φ] + λm(x)φ = 0 in Ω, φ = 0 on ∂Ω

has a positive principal eigenvalue, denoted by λ0, with the eigenfunction φ0.
It is routine to check that g ∈ R(DuF(λ0, 0)) implies that

∫
Ω
φ0gdx = 0. But

since DλuF(λ0, 0)φ0 = m(x)φ0, we have∫
Ω

DλuF(λ0, 0)φ2
0dx =

∫
Ω

m(x)φ2
0 =

1

λ0

∫
Ω

d2(x, 0)|∇φ0|2dx 6= 0

due to (2.18). Hence, DλuF(λ0, 0)x0 /∈ R(DuF(λ0, 0)). Therefore, according to
Theorem 2.3, there is a bifurcation at λ = λ0 and on the bifurcating branch

(2.19) (λ, u) = (λ(s), sφ0 + ξ(s)), ξ(s) = sρ(s),

with λ(0) = λ0, ρ(0) = 0.
We can further determine the direction of bifurcation. Substitute (2.19) into

∇ · [d2(x, u)∇u] + λ(m(x)− u)u = 0 and differentiate twice in s, then at s = 0,
we obtain

−∇ · [d2(x, 0)∇ξ′′(0)]− λ0m(x)ξ′′(0)

= 2∇ ·
[
∂d2(x, 0)

∂u
φ0∇φ0

]
+ 2λ′(0)m(x)φ0 − 2λ0φ

2
0.

Multiply this equation by φ0 and integrate by parts using the divergence theo-
rem. Because φ0 is the eigenfunction of the principal eigenvalue λ0, the terms
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involving ξ′′ drop out, and it is easy to see that

λ′(0)

∫
Ω

m(x)φ2
0dx =

∫
Ω

∂d2(x, 0)

∂u
φ0|∇φ0|2dx+ λ0

∫
Ω

φ3
0dx.

This relation shows that the sign of λ′(0) depends on ∂d2

∂u
(x, 0) since∫

Ω

m(x)φ2
0dx =

1

λ0

∫
Ω

d2(x, 0)|∇φ0|2dx > 0.

In particular, if ∂d2

∂u
(x, 0) << 0, then

λ′(0) =

∫
Ω

∂d2(x, 0)

∂u
φ0|∇φ0|2dx+ λ0

∫
Ω

φ3
0dx∫

Ω
m(x)φ2

0dx
< 0.

Thanks to the results in [31], the direction of bifurcation locally determines
the stability of the bifurcating solution branch. In this case, λ′(0) < 0 implies
that when λ < λ0 and λ ≈ λ0, the solution branch is unstable. Then, us-
ing subsolution argument, if λ < λ0 and λ ≈ λ0, there exists another branch
of larger solutions, which are stable from below. Also, note that for λ < λ0,
the equilibrium solution u = 0 of (2.17) is linearly stable. Therefore, bistable
dynamics appear in the model due to nonlinear diffusion, even though the pop-
ulation growth term is logistic. In other words, an Allee effect can be observed
that would not be present if the population dispersed by simple diffusion. Why
should the condition ∂d2

∂u
(x, 0) << 0 create an Allee effect? Let us interpret this

phenomena intuitively. ∂d2

∂u
(x, 0) << 0 simply means that diffusion decreases

rapidly as density increases. When there is small population density, it diffuses
very fast, which leads to extinction because of the lethal boundary condition
(u = 0 on ∂Ω). However, when the population density is very large, slow dif-
fusion at high densities can help the population concentrate near middle of the
domain Ω to avoid losses from the lethal boundary. A typical feature of models
with Allee effects is that for some parameter values a small change in a param-
eter may lead to a sudden collapse of the population, and when the population
collapses it cannot recover by itself. This is referred to as a hysteresis effect.

Our last example is not only about the application of bifurcation theory
but also about that of the eigenvalue method. We want to show that the
combination of these two methods can help us study the uniqueness of positive
solutions in fairly general models. Here is the main result.

Theorem 2.4. Suppose that the positive solutions of

∇ · [d(x, u)∇u+ u~e(x, u)] + λf(x, u)u = 0,
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with suitable boundary conditions, exist only for λ > λ0 and are all linearly
stable. Then the positive solution is unique for any given λ.

The main idea of the proof is actually quite simple. First, since positive
solutions are linearly stable, the continuation of all solution branches is possible
by the implicit function theorem. Then notice that at (λ0, 0), according to
bifurcation theory, the bifurcating branch is locally unique. Hence, considering
the direction of bifurcation with respect to the parameter λ, one can see that
nonuniqueness leads to a contradiction. ( See [12] for a detailed discussion.)
Consider the simple model: ∆u + λ(m(x) − u)u = 0 with suitable boundary
conditions. By eigenvalue comparison, it is easy to verify that the conditions of
Theorem 2.4 are satisfied, hence the positive solution is unique. A more general
model: ∇ · [d(x, u)∇u − u~e(x)] + λ(m(x) − u)u = 0 is investigated in [12] for
Dirichlet boundary conditions. When d(x, u) ≡ d(x, 0) or ~e ≡ 0 and ∂d/∂u ≥ 0,
the authors show that the hypotheses of Theorem 2.4 are satisfied. An open
question is whether the hypotheses of Theorem 2.4 hold in more general cases.
For example, what about ~e 6= 0 and ∂d/∂u ≥ 0? (The question of uniqueness of
the positive equilibrium in models with nonlinear diffusion and/or advection and
spatially varying coefficients is largely open. Some additional partial results are
derived for a particular model in [17], but again many questions remain open.)

3. Interacting species–ecological issues

There are three types of basic interactions between species: cooperation (mu-
tualism), competition and predator-prey. These interaction types may vary
with location or density and they may combine. Take intraguild predation and
apparent competition for examples. Intraguild predation [50] is the killing and
eating of potential competitors. This interaction represents a combination of
predation and competition, because both species utilize the same prey resources
and also benefit from preying upon one another. Apparent competition [49] oc-
curs indirectly between two species which are both preyed upon by the same
predator. An increase in one prey population causes an increase in the predator
population, which however has a negative effect on the other prey.

The main ecological issues for interacting species are determining when the
species can coexist and how coexistence is influenced by spatial heterogeneity
and dispersal.

3.1. Modeling. Let us begin our discussion with the dynamical system

dui
dt

= fi(~u)ui,

where ~u = (u1, u2, ..., un), n ≥ 2. We first assume that fi is of Lotka-Volterra
form since that is the simplest form that is still often useful in understanding
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how different factors affect the outcomes of interactions between species. Lotka
-Volterra models assume that the rate of interaction between species is always
described by a mass action law, in the same way as in chemical reactions, so
that interaction terms are always products of densities. Improvements may be
needed if some unrealistic situation appears.

• Cooperation: ∂fi/∂uj ≥ 0, i 6= j. If the Lotka-Volterra form is used,
i.e., fi = ai − biiui +

∑
j 6=i bijuj, then in some cases solutions may blow

up in finite time. To avoid this problem, a realistic assumption is to
require that cooperative effects saturate. For example, mutualism with
saturation of the mutualistic effects could be described by taking

fi = ai − biiui +

∑
j 6=i bijuj

1 + uj
.

• Competition: ∂fi/∂uj ≤ 0, i 6= j. For competion models the Lotka-
Volterra form fi = ai −

∑n
j=1 bijuj is commonly used. The idea is that

if competitors use the same resources, then competition with members
of the other species should affect individuals in the same general way as
competition with members of their own species, so a term similar to the
logistic term in a single species model is an appropriate way to describe
competition.
• Predator-prey: ∂f1/∂u2 ≥ 0, ∂f2/∂u1 ≤ 0 if n = 2 and u1, u2 de-

note population densities of predator and prey respectively. Predators
may be generalists that consume prey species other than the one in
the model, or specialists that depend exclusively on the prey species
in the model. Generalist predators can survive even when the prey
species is not present. In models for generalist predators that means
the linear growth term should be positive, so a logistic term in the
predator equation is required to keep the population bounded. A Lotka-
Voterra model for a generalist predator and one of its prey species is
given by f1 = a1 − b11u1 + b12u2, f2 = a2 − b21u1 − b22u2, where all
coefficients are positive. For specialist predators, the predator cannot
survive without the prey, so the predator population will go to zero if
the prey is not present, and even without a logistic term in the preda-
tor equation the predator population will remain bounded. A Lotka-
Volterra model of this situation would be given by f1 = −a1 + b12u2,
f2 = a2 − b21u1 − b22u2. In Lotka-Volterra models for predation, the
mass action terms b12u1u2 and b21u1u2 may not be completely accu-
rate when prey densities are high, because with simple mass action the
rate of consumption of prey by predators can become arbitrarily high
if the prey density becomes high. In reality, it takes a predator some
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time to consume a prey item, so there is a limit to how fast preda-
tors can consume prey even if there are many prey available. An im-
provement is the introduction of functional response, which is a more
sophisticated description of the rate of prey consumption per preda-
tor. The functional response is a function of the predator and prey
demnsities. Most functional responses are zero when the prey den-
sity is zero and saturate in the sense that they remain bounded as the
prey density goes to infinity. Thus a typical form for the functional re-
sponse is g(u1, u2)u2. For a specialist predator with such a functional
response, the usual form of the predator-prey model is: f1 = −a1 +
b12g(u1, u2)u2, f2 = a2 − b21g(u1, u2)u1 − b22u2. Various forms of func-
tional response g(u1, u2)u2 are in use. For example, the Holling II type:

g(u1, u2)u2 =
u2

1 + hu2

, the Holling III type: g(u1, u2)u2 =
u2

2

1 + hu2
2

,

and the Beddington-DeAngelis type: g(u1, u2)u2 =
u2

1 + hu2 + ku1

are

all fairly common. The Beddington-DeAngelis response differs from the
others because it depends on both predator and prey densities and de-
creases as the predator density increases. This describes a situation
where the predators interfere with each other while hunting prey if the
predator density is high.

Next, let us incorporate dispersal into the system. The simplest form is
random dispersal by simple diffusion.:

∂ui
∂t

= di∆ui + fi(x, t, ~u)ui, i = 1, 2, ...n.

Reaction-diffusion models of this type have been studied extensively; see[13].
In [77], a competition model with cross-diffusion and advection is formulated as
follows 

∂u1

∂t
= ∇ · {∇[(α1 + β11u1 + β12u2)u1] + γ1u1∇U(x)}

+(a1 − b11u1 − b12u2)u1,
∂u2

∂t
= ∇ · {∇[(α2 + β21u1 + β22u2)u2] + γ2u2∇U(x)}

+(a2 − b21u1 − b22u2)u2.

In this model, the diffusion rates of these two species depend on the departure
point, their diffusion rates increase with the densities of their own population
and the population of the competitor so that they avoid crowding, and individu-
als have a tendency to move along some environment gradient ∇U . Quite a few
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variations on the original cross diffusion model for competition have been stud-
ied, including predator-prey models. In deriving predator-prey models with
cross diffusion or other forms of dispersal that depend on predator and prey
densities it is important to be sure that the dispersal terms are realistic. Specif-
ically, predators should not run away from prey and prey should not move
toward predators. A realistic form of cross diffusion model for a predator-prey
that has appeared in the literature [56] is

∂u1

∂t
= ∇2{(α1 +

β12

1 + u2

)u1}+ f1u1,

∂u2

∂t
= ∇2{(α2 + β21u1)u2}+ f2u2.

In this model one can see that diffusion rate of predator u1 decreases in presence
of prey u2 but never becomes negative, and the diffusion rate of prey increases
when the predator appears. Thus, predators move more slowly in the presence
of prey and thus try to stay near the prey, but prey move more rapidly when
predators are around to try to avoid them. The formulation and analysis of
relevant and realistic models with nonlinear advection or diffusion terms raises
many open questions. The model

∂u

∂t
= ∇ ·

[
1

R(v)
∇u− uR′(v)∇v

R(v)[R(v) + g(v)]

]
+ f1u

∂v

∂t
= dv∇2v + f2v

is proposed in [57]. In this system, u and v represent densities of predator
and prey respectively. R(v) > 0 is an increasing function which describes the
turning rate of predators, while g(v) > 0 describes predator satiation. Note
that if g ≡ 0, then the dispersal term for the predator u becomes ∇2(u/R(v)),
which corresponds to density-dependent diffusion with the diffusion rate based
on departure point. See [66] and [67] for related models.

3.2. Monotone methods. Arising from the study of simple systems of ordi-
nary differential equation and single reaction-diffusion equations, the classical
viewpoint for showing coexistence of interacting species is to show that there is
a unique positive equilibrium that is globally attracting among all positive solu-
tions. However for some systems, the situation is much more complicated. For
example, predator-prey systems may have limit cycles and food-chain models
can have chaos. In fact, even the uniqueness and local stability of equilibria are
often hard to prove, especially in reaction-diffusion models. However, it may
still be possible to give a reasonable characterization of coexistence in some cases
by using monotone methods. It is known that single equation reaction-diffusion
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models typically have maximum principles. For some dynamical systems, com-
parison principles still apply, and in fact there is a well developed theory of
monotone dynamical systems; see [79]. For example, consider

dvi
dt

= fi(t, ~v), 1 ≤ i ≤ n,

and suppose that ~v(t) and ~w(t) are two solutions with initial values ~v(0) and
~w(0). If ∂fi/∂vj ≥ 0, i 6= j, i.e., in mutualism systems, vi(0) ≥ wi(0) for
1 ≤ i ≤ n implies that vi(t) ≥ wi(t), 1 ≤ i ≤ n. In a 2× 2 competition system,
i.e., when n = 2 and ∂fi/∂vj ≤ 0, i 6= j, if v1(0) ≥ w1(0) and v2(0) ≤ w2(0)
then v1(t) ≥ w1(t) and v2(t) ≤ w2(t) for t > 0. However, for n× n competition
systems, n ≥ 3, and predator-prey systems, usually there are no comparison
principles. Even when a dynamical system

dvi
dt

= fi(t, ~v), 1 ≤ i ≤ n,

has comparison principles, systems of the form

∂ui
∂t

= Liui + fi(t, ~u), 1 ≤ i ≤ n,

generally do not if the differential operator Li in one or more of the equations
depends on uj or its derivatives for some j 6= i. The lack of maximum principles
or comparison principles results in a series of problems. Since ui denotes a
population density, it is naturally expected that ui(0) ≥ 0 will imply ui(t) ≥ 0
for t > 0 and that the solution ui(t) is bounded on any finite time interval
and thus exists globally. Maximum principles are valuable for obtaining such
results. Without maximum principles or comparison principles, nonnegativity
of solutions and a priori bounds for global existence are much more difficult to
obtain. Furthermore, many versions of the method of upper and lower solutions,
which are very useful in proving the coexistence or extinction of species and
connecting stability to dynamics, are based on comparison principles. Therefore,
we will first restrict our discussion to monotone systems, that is, systems with
comparison principles.

Let us take a brief review of monotone methods. Suppose that Ω is a smooth
bounded domain in RN , L is a second order linear uniformly strongly elliptic
operator in Ω with smooth coefficients, with boundary conditions on ∂Ω given
by Bu = α(x)∂u/∂n+(1−α(x))u where 0 ≤ α(x) ≤ 1 is smooth, and f(x, u) is
a given smooth function in Ω×R or Ω×U for some appropriate subset U ⊂ R.
For single equations, the following comparison principle is well-known.

Theorem 3.1. Assume that

1)
∂u1

∂t
− Lu1 − f(x, u1) ≥ ∂u2

∂t
− Lu2 − f(x, u2) in Ω× (0, T ];



REACTION-DIFFUSION-ADVECTION MODELS 21

2) Bu1 ≥ Bu2 on ∂Ω× (0, T ];

3) u1(x, 0) ≥ u2(x, 0) in Ω.

Then u1(x, t) ≥ u2(x, t) in Ω× [0, T ]. If in addition, any inequalities in 1), 2) or
3) become strict at some point x ∈ Ω, we have u1(x, t) > u2(x, t) in Ω× (0, T ].

Consider the following problem

(3.1)
∂u

∂t
= Lu+ f(x, u) in Ω× (0, T ], Bu = 0 on ∂Ω× (0, T ].

We want to describe a case in which we can use Theorem 3.1 to show the
existence of steady states to the problem (3.1). First, suppose that u(x) satisfies
Lu+ f(x, u) ≥ 0 in Ω, Bu ≤ 0 on ∂Ω with one of the previous two inequalities
strict for some x ∈ Ω. Let u(x, t;u) denote the solution of the problem (3.1) with
initial value u(x). According to Theorem 3.1, it is easy to see that u(x, t;u) >
u(x) in Ω × (0, T ]. For any τ > 0, set u1(x, t) = u(x, t + τ ;u) and u2(x, t) =
u(x, t;u). Since u1(x, 0) = u(x, τ ;u) > u(x) = u2(x, 0), applying Theorem
3.1 again, it follows immediately that u(x, t + τ ;u) = u1(x, t) > u2(x, t) =
u(x, t;u), i.e., u(x, t;u) is strictly increasing in t. If additionally u(x, t;u) ≤ M
for some M < ∞, then we have limt→∞ u(x, t;u) = u∗(x) for some u∗(x) and
Lu∗ + f(x, u∗) = 0 in Ω by regularity. Now suppose that u(x, t;u) ≤ M and
suppose further that u0(x) is a linearly unstable equilibrium of the problem
(3.1) and all solutions of (3.1) with positive initial values are bounded. The
assumption that u0(x) is linearly unstable means that the principal eigenvalue
σ0 of the following eigenvalue problem

Lψ + fu(x, u0)ψ = σψ in Ω, Bψ = 0 on ∂Ω

is positive with the corresponding eigenfunction ψ0. It is routine to check that
u = u0 + εψ satisfies Lu + f(x, u) > 0 in Ω, Bu = 0 on ∂Ω provided that ε is
sufficiently small. Repeating the arguments above, it follows that there exists
another equilibrium u∗(x) of (3.1) and clearly u∗(x) > u0(x). Thus, if solutions
are bounded and there is an unstable equilibrium then there must be solutions
that start above the unstable equilibrium and increase toward another larger
equilibrium. This method could be applied to show that there is a positive
equilibrium for the logistic equation with diffusion if the equilibrium u = 0 is
unstable.
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For 2× 2 competition systems with linear diffusion and advection, analogous
results still hold. To be more specific, consider the following system

(3.2)



∂u1

∂t
= L1u1 + g1(x, u1, u2)u1 in Ω× (0,∞)

∂u2

∂t
= L2u2 + g2(x, u1, u2)u2 in Ω× (0,∞)

Bu1 = Bu2 = 0 on ∂Ω× (0,∞)

with ∂g1/∂u2 ≤ 0 and ∂g2/∂u1 ≤ 0. Suppose that two pairs of functions
(u1(x, t), u2(x, t)) and (v1(x, t), v2(x, t)) satisfy

∂u1

∂t
− L1u1 − g1(x, u1, u2)u1 ≥

∂v1

∂t
− L1v1 − g1(x, v1, v2)v1

∂u2

∂t
− L2u2 − g2(x, u1, u2)u2 ≤

∂v2

∂t
− L2v2 − g2(x, v1, v2)v2

Bu1 ≥ Bv1,Bu2 ≤ Bv2 on ∂Ω× (0,∞).

Then if initially u1(x, 0) ≥ v1(x, 0) and u2(x, 0) ≤ v2(x, 0), we have u1(x, t) ≥
v1(x, t) and u2(x, t) ≤ v2(x, t). Simply speaking, the system (3.2) is called order-
preserving or monotone. Suppose that the system (3.2) only admits two semi-
trivial equilibria (u∗1(x), 0) and (0, u∗2(x)). If they are both linearly unstable,
then by monotonicity arguments similar to the one that was just described
for the single equation (3.1), there exist positive steady states (w∗1(x), w∗2(x))
and (w∗∗1 (x), w∗∗2 (x)) satisfying 0 < w∗1 ≤ w∗∗1 < u∗1 and u∗2 > w∗2 ≥ w∗∗2 >
0. Furthermore the set {(u1, u2) : w∗1 ≤ u1 ≤ w∗∗1 and w∗∗2 ≤ u2 ≤ w∗2} is
globally attracting among positive solutions. Hence, we say these two species
can coexist. It might be the case that (w∗1(x), w∗2(x)) = (w∗∗1 (x), w∗∗2 (x)), but the
monotonicity argument by itself does not show that. Thus, in this case, there
might or might not be a unique globally stable positive equilibrium, but there
certainly will be a globally stable positive attracting set. The key idea is that
if one of the semi-trivial equilibria is linearly unstable, then trajectories that
start close to it will be bounded by trajectories that go in a monotone way to
another equilibrium. If the other semi-trivial equilibrium is also unstable then
those trajectories will be bounded away from it and thus there will be a positive
attracting set and positive equilibria as described above. On the other hand,
if there is no coexistence equilibrium and one of the semi-trivial equilibria is
unstable, then the only other nonnegative equilibrium is the other semi-trivial
equilibrium, so that solutions are forced to converge to that equilibrium, i.e., it
is globally asymptotically stable, so one of the species becomes extinct.
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3.3. Persistence theory. In the context of models for interacting species the
instability of a semi-trivial equilibrium where a given species is not present
means that the species can invade a system where it is not present if it is
introduced at a low density. We have seen that mutual invasibility, that is, the
instability of both semi-trivial equilibria, predicts coexistence in models for two
competitors. A conjecture proposed by Turelli in 1978 [80] is that in models
for arbitrarily many competitors coexistence is implied by mutual invasibility.
However, this is not always true and additional conditions are required. A
counter-example due to May and Leonard can be found in [70] where a three-
species competition model

(3.3)



du1

dt
= [1− u1 − αu2 − βu3]u1

du2

dt
= [1− βu1 − u2 − αu3]u2

du3

dt
= [1− αu1 − βu2 − u3]u3

with α < 1 < β is studied. It is routine to check that all three semi-trivial
steady states (1, 0, 0), (0, 1, 0) and (0, 0, 1) are linearly unstable. However, it can
be shown that the model has a globally stable positive equilibrium so that the
species coexist if α+β < 2 but the densities of the three species are periodically
small because trajectories spiral outward toward the boundary of the positive
octant if α+β > 2. A key difference between the May-Leonard example and the
case of two competitors is that in the models for two competitors the system is
monotone but in the case of three or more it is not. This raises two interesting
questions, namely, when is it true that invasibility implies coexistence, and
how can we use invasibility to establish coexistence in systems that are not
monotone? These questions are addressed by persistence theory.

Persistence theory was originated for Kolmogorov type ODE models

dui
dt

= fi(~u)ui, i = 1, 2, ..., n, ~u = (u1, u2, ..., un).

Kolmogorov type models are simply population models where the functions de-
scribing species interactions are essentially arbitrary except for the requirement
that the growth rate in the equation for ith species must have the density ui
of that species as a factor, so that if the population is initially 0 it will re-
main 0. In such models, the sets Y0 = {~u ∈ RN : ui > 0, i = 1, 2, ..., n} and
∂Y0 = {~u ∈ RN : ui ≥ 0, i = 1, 2, ..., n;uj = 0 for some 1 ≤ j ≤ n} are
invariant. A system is uniformly persistent if there exists ε > 0 such that for
any trajectory ~u(t) with ~u(0) ∈ Y0,

lim inf
t→+∞

d(~u(t), ∂Y0) > ε
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where d(~u(t), ∂Y0) denotes the distance from ~u(t) to ∂Y0. The key point is that
the if the system is uniformly persistent then the densities of all populations
are eventually bounded below by some fixed constant, so that none will become
extinct. The populations might coexist at a stable equilibrium, but they might
also coexist on a positive periodic orbit or even a positive strange attractor. If
in addition to being uniformly persistent a system is also point dissipative, so
that there is a bounded set that all trajectories eventually enter, then it is said
to be permanent. It turns out that systems which are permanent must have a
positive equilibrium but it is not necessarily unique or stable. Persistence theory
provides criteria for determining when a system is persistent. It is formulated
in terms of dynamical or semi-dynamical systems. Reaction-advection-diffusion
models generate semi-dynamical systems on appropriate spaces (see for example
[44, 72]) so persistence theory can be applied to them.

Two technical problems arise in applying persistence theory to PDE models
that are not present in the ODE case. First, the underlying space Y is infinite
dimensional and not locally compact. Second, if for example we take Y0 = {~u ∈
[C(Ω)]n : ui > 0 on Ω, i = 1, 2, ..., n}, then ~u ∈ ∂Y0 if for some i, ui(x0) = 0 for
some x0 ∈ Ω but ui 6= 0 ∈ C(Ω). Therefore, additional analysis is needed in the
PDE case. It turns out that the technical problems can be overcome by using
regularity theory and the strong maximum principle.

Suppose that π is a semi-dynamical system on a complete metric space Y .
π is point dissipative if there is a bounded set U ⊆ Y such that for any y ∈
Y there exists t∗ > 0 so that π(y, t) satisfies π(y, t) ∈ U for t > t∗. An
important background result for using persistence theory and other methods
from dynamical systems theory is as follows:

Theorem 3.2 ([9]). If π is point dissipative and there exists t0 > 0 such that
for any given bounded set V ⊆ Y , the set {π(v, t) : v ∈ V, t ≥ t0} is compact,
then π has a compact global attractor Q.

Now consider the following system

(3.4)


∂ui
∂t

= Liui + fi(x, ~u)ui in Ω× (0,∞)

∂ui
∂n

+ bi(x)ui = 0 on ∂Ω× (0,∞)

~u(x, 0) = ~u0(x),

where 1 ≤ i ≤ n, Ω is bounded with ∂Ω smooth, and for each i, Li is a second
order elliptic operator with smooth coefficients. Let Y be a space where (3.4)
generates a semidynamical system. (Depending on the details of the model and
boundary conditions we may want to work in [C(Ω)]n, [C1(Ω)]n, or some other
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space. See [44, 72] for detailed discussions of this topic. ) Let Y0 = {~u ∈
Y : ui > 0 on Ω, i = 1, 2, ..., n}. Define π(~u0, t) = ~u(x, t). Suppose that π
is dissipative. Parabolic regularity can be used to show that for a bounded
set V ⊆ Y and t0 > 0, the set {π(v, t) : v ∈ V, t ≥ t0} is compact. Because of
parabolic regularity and Theorem 3.2, π has a compact global attractor, denoted

by Q. Let X̃ = π(B(Q, ε), [0,∞)), where B(Q, ε) denotes an ε−neighborhood

of Q, and X = π(X̃, t′) for some fixed t′ > 0. Then on X, orbits π(~u0, t)
correspond to classical solutions of (3.4) and by the strong maximum principle,
for any ~u ∈ S = ∂Y0

⋂
X, ui ≡ 0 must hold for some i, 1 ≤ i ≤ n and for j 6= i,

either uj ≡ 0 or uj > 0 on Ω. Therefore, treating π as a semi-dynamical system
restricted to X, the analysis is analogous to the ODE case.

For u ∈ X, define

ω(u) =
⋂
t≥0

⋃
s≥t

{π(u, r) : r ≥ s}

and define α(u) to be the set of all limits of all sequences {yn} ⊆ X such that
limn→∞ π(yn, tn) = u for some sequence {tn} with limn→∞ tn =∞.

The stable set and unstable set of a compact invariant set M are defined to
be

W s(M) = {u ∈ X : ω(u) 6= ∅, ω(u) ⊆M}

and

W u(M) = {u ∈ X : α(u) 6= ∅, α(u) ⊆M}

respectively. Assuming that M and N are isolated invariant sets, then M is
chained to N if there exists u ∈ W u(M)

⋂
W s(N), denoted by M → N . A

sequence of isolated invariant sets M1,M2, ...,Mk, k ≥ 1, is called a chain if
M1 →M2 → ...→Mk. It is a cycle if M1 = Mk.

Recall that S = ∂Y0

⋂
X. Let ω(S) =

⋃
u∈S ω(u). (Note that this is not

the standard definition of the ω-limit set of a set.) The set ω(S) is isolated if

ω(S) =
⋃k
j=1Mj, where Mj, 1 ≤ j ≤ k, are isolated invariant sets. ω(S) is

called acyclic if it is isolated and no subcollection of {M1,M2, ...,Mk} is a cycle.
The principal result on persistence can now be stated.

Theorem 3.3 ([42]). Suppose that the assumptions of Theorem 3.2 hold and
ω(S) is acyclic. Then π is uniformly persistent (permanent) if and only if for
each Mj, 1 ≤ j ≤ k

(3.5) W s(Mj)
⋂

(X \ S) = ∅.

Roughly speaking, W s(Mj)
⋂

(X \ S) = ∅ is an invasibility condition.
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For the application of persistence theory, first take a predator-prey model

(3.6)



∂u1

∂t
= ∇ · [d1∇u1 − u1∇p1] +

(
−d+

e(x)u2

1 + h1(x)u1 + h2(x)u2

)
u1

in Ω× (0,∞),
∂u2

∂t
= ∇ · [d2∇u2 − u2∇p2] + (a(x)− b(x)u2)u2

− c(x)u1u2

1 + h1(x)u1 + h2(x)u2

in Ω× (0,∞),

αi(x)[di∇ui − ui∇pi] · ~n+ (1− αi(x))ui = 0, i = 1, 2

on ∂Ω× (0,∞)

for example. Assume that there exists ε0 > 0 such that d, b(x), di, hi(x) ≥ ε0
and ε0 ≤ αi(x) ≤ 1, i = 1, 2. Note that by setting

vi = e−pi/diui,

the boundary condition is converted to ∂vi

∂~n
+ βi(x)vi = 0. This allows use

of the maximum principle for each equation individually. Moreover, since
d, b(x), hi(x) ≥ ε0, arguments based on the maximum principle (applied to one
equation at a time) and regularity theory show that the system is dissipative
and bounded orbits are precompact. It then follows that the assumptions in
Theorem 3.2 are satisfied. Next, let us check the other assumptions in Theorem
3.3. On the one hand, if u2 ≡ 0, u1 satisfies

∂u1

∂t
= ∇ · [d1∇u1 − u1∇p1]− du1,

thus it is easy to see that limt→∞ u1(x, t) = 0. On the other hand, if u1 ≡ 0,
then u2 satisfies

(3.7)
∂u2

∂t
= ∇ · [d2∇u2 − u2∇p2] + (a(x)− b(x)u2)u2.

Assume that u2 ≡ 0, as a equilibrium of (3.7), is linearly unstable. Then the
stable set of (0, 0) is the set {(u1, 0) : u1 ≥ 0} and (3.7) has a unique stable
positive equilibrium u∗2, and since the set of equilibria in S consists of (0, 0)
and (0, u∗2) with (0, 0) unstable and (0, u∗2) stable relative to S, there are no
cycles present in the semiflow restricted to S. Additionally, assume that (0, u∗2)
is a linearly unstable steady state of (3.6) relative to X; then (3.5) is satisfied.
Therefore, according to Theorem 3.3, the system is permanent.



REACTION-DIFFUSION-ADVECTION MODELS 27

Similarly, for a system with a generalist predator



∂u1

∂t
= ∇ · [d1∇u1 − u1∇p1] +

(
a1(x)− b1(x)u1 +

e(x)u2

1 + h1(x)u1 + h2(x)u2

)
u1

in Ω× (0,∞),
∂u2

∂t
= ∇ · [d2∇u2 − u2∇p2] + (a(x)− b(x)u2)u2 −

c(x)u1u2

1 + h1(x)u1 + h2(x)u2

in Ω× (0,∞),

αi(x)[di∇ui − ui∇pi] · ~n+ (1− αi(x))ui = 0, i = 1, 2

on ∂Ω× (0,∞),

if (u∗1, 0) and (0, u∗2) are the two unique semi-trivial steady states, which are
linearly unstable, then the system is permanent.

Simply speaking, in predator-prey models (and other models that do not gen-
erate monotone semiflows), persistence theory shows that coexistence is implied
by mutual invasibility and acyclicity, just as in 2×2 competition models, mono-
tone methods show coexistence is implied by mutual invasibility. An important
difference between monotone and nonmonotone systems is that monotonicity
also can be used to show extinction while persistence theory cannot, and in
fact there are not many methods for showing extinction in nonmonotone sys-
tems. Sometimes Lyapunov functions or functionals can be used, but they are
not always available and there are few general methods for constructing them.
Finding ways of showing extinction in general models is an important area of
research that is largely open.

Cross diffusion parabolic systems of the type


∂u

∂t
= ∇ · [(d1 + α11u+ α12v)∇u+ β1u∇v] + (a1 − b1u− c1v)u,

∂v

∂t
= ∇ · [β2v∇u+ (d2 + α21u+ α22v)∇v] + (a2 − b2u− c2v)v,

supplied with Neumann or Robin type boundary conditions, originated from
the Shigesada, Kawasaki and Teramoto model [77]. Although they describe
two competing species they are not monotone because of the coupling in the
derivative terms. In [64] and [65], the authors investigate the dynamics of this
system in [W 1,p(Ω)]2 with p > N for Ω ⊆ RN and in particular, establish the
existence of global attractors and give conditions for persistence in [C1(Ω)]2.



28 CHRIS COSNER

Persistence is also studied in the intraguild predation model with density-
dependent dispersal

∂u

∂t
= d1∆u+

(
r(x)− ω1u−

a1v

1 + h1a1u
− a1w

1 + h2a2u

)
u,

∂v

∂t
= ∆[M(u,w)v] + g(u, v, w)v,

∂w

∂t
= d3∆w +

(
e3a3v

1 + h3a3v
+

e2a2u

1 + h2a2u
− µ2 − ω3w

)
w,

with Neumann boundary conditions, where u, v, w represent prey (resources),
intermediate predator/intraguild prey and intraguild predator (top predator)
respectively,

g(u, v, w) =
e1a1u

1 + h1a1u
− a3w

1 + h3a3v
− µ1 − ω2v,

and M(u,w) = mλ(g(u, 0, w)) where mλ is a family of functions depending on a
parameter λ so that for positive constants 0 < d < d2 we have m0(g) = d2 > 0
for all real g, mλ(0) = d2 for λ ≥ 0, mλ(g) ≤ d2 but mλ(g) ≥ d if g > 0,
and mλ(g) ≥ d2 with mλ(g) → ∞ as λ → ∞ if g < 0. From the viewpoint of
biology, g(u, 0, w), the local growth rate of v when v ≈ 0, can be interpreted as
the fitness of the intermediate predator/intraguild prey when its density is low.
The diffusion coefficient M(u,w) = m(g(u, 0, w)) in this system implies that
the diffusion rate of intermediate predator depends on the departure point and
is smaller when fitness is positive and larger when fitness is negative, with the
strength of the effect increasing with λ. This is biologically reasonable because
it reflects the idea that individuals will stay in one place longer in favorable
regions but move around more in unfavorable regions to seek resources or avoid
predators. It is shown in [75] that for λ sufficiently large this type of dispersal
allows persistence of the intermediate predator while random dispersal does not.

In general, persistence in an n× n system requires rather complete informa-
tion about each (n−1)×(n−1) subsystem with ui ≡ 0 for some 1 ≤ i ≤ n. This
limits the application of persistence theory to n = 2, 3 in many cases. In quasi-
linear systems, it is highly nontrivial to derive a priori estimates which imply
the existence of compact attractors. See [64] and [65] for example. Moreover,
so far for quasilinear systems, persistence results are set in [C1(Ω)]n. How-
ever, generally ‖u‖C1(Ω) ≥ c0 > 0 does not prevent ‖u‖L1 (total population)

or ‖u‖L∞ (maximum density) from being small, since u might oscillate rapidly
with respect to space or concentrate at some locations so that the gradient if
u could be large while the maximum or average of u is small. Therefore, ob-
taining better or easier estimates of population densities in complex models and
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determining when oscillation in space or concentration can happen or be ruled
out are very important open questions in ecological models. Furthermore, in
nonmonotone systems, the absence of a positive equilibrium does not in gen-
eral imply extinction of either population. Hence another important question is
how to get extinction results and other precise information on the dynamics of
predator-prey models, quasilinear two-species competition models, three-species
competition models, etc., where monotonicity fails.

3.4. More examples and questions. Systems describing two or three in-
teracting species that disperse by simple diffusion in a spatially homogeneous
environment have been widely studied using well developed methods. See [13].
However, models for situations with nonlinear diffusion, advection on gradients
of resource or population density, and spatial heterogeneity are much less well
understood, and current methods appear to be inadequate for their analysis.
There are many interesting ecological interactions that can be described by such
models, and they give rise to many interesting open problems in mathematics.
However, it is important to study models that provide reasonable descriptions of
situations that are ecologically interesting and which can provide new insights
into the effects of dispersal on ecological interactions.

The key idea in modeling is to consider realistic situations where the type of
dispersal could make a difference. Take predator-prey models as an example.
Consider the model

∂u

∂t
= ∇ · [∇(d(v)u)− αu∇P (v)] +

(
−d+

ecv

1 + hcv

)
u,

∂v

∂t
= ∇ · [∇(D(u)v) + βv∇Q(u)] +

(
m(x)− v − cu

1 + hcv

)
v,

where α, β > 0, u and v represent predator and prey densities respectively. In
reality, we expect that predators seek prey and prey avoid predators. Therefore,
in this model, we should assume that d′(v) ≤ 0 and P ′(v) ≥ 0, which indicates
that predators diffuse more slowly when prey are present and advect up gradient
of prey density. On the other hand, we should assume that D′(u) ≥ 0 and
Q′(u) ≥ 0. This implies that prey diffuse more rapidly in the presence of
predators and advect down the gradient of predator density. (Note that in the
equation for u , α appears with a − sign, while in the equation for v, β appears
with a + sign.) These assumptions about the dispersal terms imply that the
predators move in ways that help them find prey but prey move in ways that
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help them avoid predators. A reasonable alternative model is as follows:
∂u

∂t
= ∇ · [d∇u− αu∇P (m(x))] +

(
−d+

ecv

1 + hcv

)
u,

∂v

∂t
= D∆v +

(
m(x)− v − cu

1 + hcv

)
v.

Assume that P ′(m) > 0 and D is small. Under those assumptions, the prey
diffuse slowly enough that their density is higher where the resources m(x) are
better. Predators cannot directly sense prey density but they can track the
prey’s resources and move up the gradients of the prey’s resources. In this
case the prey move at random but the predators move in a way that might
help them find prey. These are also plausible assumptions about dispersal, but
different from those in the previous model. A common question in these two
models is how dispersal affects the persistence and dynamics of predators and
prey. When further comparing these two sorts of models on the macro scale,
a series of optimality or evolutionary questions arise naturally. Is it better for
the predators to track the prey density, the prey’s resources, or some kind of
combination? To help themselves find and stay in contact with prey, is it more
effective for predators to slow down their random movement when prey are
present or to use directed movement up the gradient of prey density? Should
either predators or prey avoid crowding by their own species? And so on.

Understanding the effects of dispersal is a very important and challenging
topic. Many questions remain open even for 2×2 systems. One type of problem
that is open in many cases is the question of global existence versus finite time
blow-up of solutions in quasilinear models. This question is also related to the
phenomenon where population densities concentrate at certain points, because
concentration occurs in some forms of finite time blow-up. Taking a further
look at the mechanisms that are incorporated into different types of models
suggests some guesses about when concentration might occur. For purposes of
comparison it is interesting to recall the case of chemotaxis models. It is known
that Keller-Segel chemotaxis model (rescaled)

∂u

∂t
= ∇ · [∇u− χu∇v],

∂v

∂t
= ∆v + (u− v),

where the constant χ is positive, can have finite time blow-up solutions in RN ,
N ≥ 2. ( For a discussion of chemotaxis models see [48].) Note that in this
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model, u activates v and u advects up ∇v. This feedback can lead to concen-
tration and blow-up in higher space dimensions. However, for the Shigesada-
Kawasaki-Teramoto type cross diffusion model for competition

∂u

∂t
= ∇ · [(d1 + α11u+ α12v)∇u+ β1u∇v] + (a1 − b1u− c1v)u,

∂v

∂t
= ∇ · [β2v∇u+ (d2 + α21u+ α22v)∇v] + (a2 − b2u− c2v)v,

u advects down ∇v and vice-versa, increasing u or v increases both diffusion
rates, and also u and v inhibit each other. These effects could be expected to
create negative feedbacks between the densities u and v so that concentration
and blow up seem less likely. On the other hand, in predator-prey models, the
prey activates the predator. If the predator also advects up the gradient of prey
density, which is a biologically plausible type of movement, then the same sort
of positive feedbacks are present as in the Keller-Segel model and concentration
phenomena or blow-up seem more likely to occur. These kinds of analysis and
guesses give us the intuition and motivation for further mathematical investi-
gations. Some relatively recent results and some references on global existence
in cross diffusion models are given in [6, 23, 63].

To conclude this section, we want to present an interesting question related
to random diffusion and competition models. It is known that in some cases
random dispersal is harmful for the existence of species. For example, in the
problem

∂u

∂t
= d∆u+ (m(x)− u)u in Ω× (0,∞), ∂u/∂n = 0 on ∂Ω× (0,∞),

where m(x) is continuous, m(x0) > 0 for some x0 ∈ Ω and
∫

Ω
m(x)dx < 0,

there exists d∗ > 0 such that the problem has a globally asymptotically stable
positive equilibrium if d < d∗ while it has no positive steady states if d > d∗.
When it comes to the 2× 2 competition dynamical system

du

dt
= (m(x)− u− c1v)u,

dv

dt
= (m(x)− c2u− v)v,

it is known that if c1 > 1 > c2, then the competitor v always wins, i.e., for each
x, limt→∞ u(x, t) = 0, limt→∞ v(x, t) = v∗(x) ≥ 0. An open question is, if by
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incorporating random dispersal as follows
∂u

∂t
= d∆u+ (m(x)− u− c1v)u,

∂v

∂t
= ∆[D(u)v] + (m(x)− c2u− v)v,

where D(u) increases with u, can the species with density u coexist with the
species with density v by increasing movement of v, since that would possibly be
harmful to the species with density v? (If D(u) is increasing, which is plausible
biologically, then if coexistence is possible at all it might require the density
u to be sufficiently high, which would imply something like an Allee effect.
Coexistence in models with Allee effects typically is conditional on the initial
population densities, but models with Allee effects can sometimes have locally
stable positive solutions.)

There are more possible cases when it comes to three-species interactions. For
example, food chains, two consumers sharing a resource and possibly interfering
with each other, one consumer using resources that may compete with each
other, 3 competitors, and so on. All these interactions could be influenced
by dispersal, especially when it is conditional on densities of other species.
Consequently, there are many open topics related to effects of dispersal on
persistence.

Above all, in formulating an ecological model, it is important to understand
the mechanisms underlying the model and make sure that the modeling assump-
tions are reasonable.

4. Interacting species–evolutionary issues

Ecological and evolutionary processes are inescapably intertwined. Evolution
is much slower because advantageous mutations are rare. Selection is often
based on ecological factors. There are natural questions about the evolution of
dispersal strategies. What strategies can evolve? Once evolved, what strategies
can persist? New traits arise from mutations, hence evolutionary change within
a species typically starts with a small number of individuals. A new trait can
evolve if a small population that has it can invade an established population
with a different trait. An existing trait can persist if a large population with
it can resist invasion by any small population with any other trait. Ecological
competition is the competition between populations, which is a single competi-
tive interaction between a small number of species or subspecies that may differ
in many traits. However, evolutionary competition is the competition between
traits, which is a series of competitive interactions among a collection of sub-
species that differ in only one or a few traits but are similar in all others. Traits
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that are related to behavior or life history are called strategies. An evolutionar-
ily stable strategy (ESS) is a strategy that has the property that no established
population using it can be invaded by any small population using a different
strategy. A convergent stable strategy has the property that a population using
a strategy close to it can invade a population using one which is further away.

Let us use the following simple examples to briefly explain the difference
between ecological and evolutionary problems. A typical ecological question
about the effects of dispersal would be to consider a system of the form

∂u

∂t
= ∇ · [du∇u− αu∇`] + (`(x)− u− bv)u in Ω× (0,∞),

∂v

∂t
= ∇ · [dv∇v − βv∇m] + (m(x)− cu− v)v in Ω× (0,∞),

γ[du∇u− αu∇`] · ~n+ (1− γ)u = 0 on ∂Ω× (0,∞),

δ[dv∇v − βv∇m] · ~n+ (1− δ)u = 0 on ∂Ω× (0,∞),

describing two competing species with some specific fixed types of dispersal and
ask when the parameters in the dispersal terms allow the two species coexist and
when they result in one of them becoming extinct. Note that in this system,
the ecological terms are different, reflecting different ecological niches for the
two species. In contrast, a typical evolutionary question concerns systems of
the form

∂u

∂t
= ∇ · [du∇u− αu∇m] + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= ∇ · [dv∇v − βv∇m] + (m(x)− u− v)v in Ω× (0,∞),

γ[du∇u− αu∇m] · ~n+ (1− γ)u = 0 on ∂Ω× (0,∞),

γ[dv∇v − βv∇m] · ~n+ (1− γ)u = 0 on ∂Ω× (0,∞),

describing sub-populations of the same species where the ecological terms are the
same but the dispersal strategies are different. A common evolutionary question
in this model would be to ask whether or not there is a dispersal strategy, that
is, a choice (d∗u, α

∗) for (du, α), such that the corresponding semi-trivial steady
state (u∗, 0) is stable relative to nonnegative solutions of this system for any
other possible dispersal strategy dv 6= d∗u, β 6= α∗ that the sub-population with
density v might use. In general biological terms, the question is whether or
not there is a dispersal strategy such that a sub-population of a species using
it can resist invasion by any small sub-population of that species using any
other dispersal strategy. In the specific terminology of evolutionary theory, this
question is simply whether or not there exists an evolutionarily stable strategy
(ESS) (d∗u, α

∗). (As in many problems about existence in mathematics, a good
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way to show that such strategies exist is to explicitly find them, if that is
possible.)

4.1. Selection for dispersal. Let us begin our discussion with the models and
approach introduced by Hastings [43] in 1983 . In [43], Hastings studied a model
with simple diffusion and spatial variation

(4.1)


∂u

∂t
= du∇ · [µ(x)∇u] + f(x, u)u in Ω× (0,∞),

∂u

∂n
= 0 on ∂Ω× (0,∞).

Suppose that f(x, u) is decreasing in u, f(x, 0) > 0 and f(x, u) < 0 for u large.
In that case the model will have a unique positive stable equilibrium solution
u∗(x) . Think of u∗ as the density of an established resident population. Further
assume that f(x, u) is nonconstant when u is any given positive constant. This
condition guarantees that we cannot have f(x, u∗) ≡ 0. Suppose otherwise.
Then if f(x, u∗) ≡ 0, it follows that u∗ has to be constant since it satisfies
(4.1). Then according to that assumption, f(x, u∗) is nonconstant, which is a
contradiction. First, let us take a look at Hastings’ approach. Think of v as
an invading small population with a similar dispersal pattern but different rate
and assume that v has little impact on u. Hence v satisfies

∂v

∂t
= dv∇ · [µ(x)∇v] + f(x, u∗ + v)v in Ω× (0,∞),

∂v

∂n
= 0 on ∂Ω× (0,∞).

The linearized problem at v = 0 is

(4.2)


dv∇ · [µ(x)∇ψ] + f(x, u∗)ψ = σψ in Ω,

∂ψ

∂n
= 0 on ∂Ω.

It is known that the invasion is possible if and only if the principle eigenvalue
σ0 of (4.2) is positive. Recall that u∗(x) as the resident satisfies

du∇ · [µ(x)∇u∗] + f(x, u∗)u∗ = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.
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Then if dv < du, direct computation gives

σ0 = sup
ψ∈W 1,2(Ω)

−dv
∫

Ω
µ(x)|∇ψ|2dx+

∫
Ω
f(x, u∗)ψ2dx∫

Ω
ψ2dx

≥
−dv

∫
Ω
µ(x)|∇u∗|2dx+

∫
Ω
f(x, u∗)(u∗)2dx∫

Ω
(u∗)2dx

>
−du

∫
Ω
µ(x)|∇u∗|2dx+

∫
Ω
f(x, u∗)(u∗)2dx∫

Ω
(u∗)2dx

= 0.

Note that the second inequality is strict since f(x, u∗) 6= 0 implies that∇u∗ 6= 0.
Therefore, following Hastings’ approach, we see that u∗ can be invaded by a
small population using dispersal strategy dv∇ · [µ(x)∇v] if and only is dv < du.
In other words, no dispersal strategy with du > 0 and f(x, u∗) 6= 0 can be
evolutionarily stable and the strategy with du = 0 is convergent stable. What is
happening that leads to this result? Consider the logistic term, i.e., f(x, u∗) =
m(x)−u∗. In this form m(x) determines the population density the environment
can support at location x. It can be interpreted as describing the availability
of resources for the population. For any fixed du > 0, integrating the equation
satisfied by u∗, we have

∫
Ω
f(x, u∗)u∗dx = 0. Since f(x, u∗) = m(x)−u∗ can not

be identically zero as explained before, f(x, u∗) = m(x)−u∗ must change signs.
This means that the equilibrium population density u∗ of the resident does not
match resource availability and thus it could be invaded because it leaves some
resources available to an invader.

A possible objection to Hastings’ approach is that it does not treat the res-
ident and invader symmetrically. Later, in [34], that issue was addressed for a
special case by using the following model:

(4.3)



∂u

∂t
= du∆u+ [m(x)− u− v]u in Ω× (0,∞),

∂v

∂t
= dv∆v + [m(x)− u− v]v in Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞).

In [34] it was shown that if
∫

Ω
m(x)dx > 0, there exist two semi-trivial steady

states (u∗, 0) and (0, v∗) for all du > 0, dv > 0. If du > dv, then (u∗, 0) is
linearly unstable and (0, v∗) is linearly stable. It is also easy to verify that there
are no positive steady states. These results follow from eigenvalue comparisons.
Notice that this is a monotone system, hence it follows from monotone methods
(Section 3.2) that (0, v∗) is globally asymptotically stable. That indicates that
there is selection for slower random dispersal. Why should that be the case? In
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the previous example (4.1), we already know that for any fixed du > 0, u∗ does
not match resource availability. However, it can proved that if m(x) > 0 in Ω,
then as du → 0, u∗ → m(x) uniformly on any closed subset of Ω. Therefore the
smaller the dispersal rate is, the better the population density of the species
matches resource availability.

What about conditional dispersal, that is, nonrandom dispersal in response
to environmental conditions? McPeek and Holt [71] found that there was se-
lection for certain types of conditional dispersal in numerical studies of discrete
time two-patch models. In the context of reaction-diffusion-advection models
it seems plausible that the forms of conditional dispersal that might be favored
by selection are those that allow populations to best match their resources.
One idea of how to find such dispersal strategies is to introduce some kind of
advection and see whether it is possible to adjust it so that it leads to a popu-
lation that matches the resource m(x). A natural thing to try is to incorporate
advection up the gradient of resource density:

∂u

∂t
= ∇ · [du∇u− αu∇m] + (m(x)− u)u in Ω× (0,∞),

[du∇u− αu∇m] · ~n = 0 on ∂Ω× (0,∞).

The effects of advection up the gradient of m(x) are subtle. Roughly speaking,
when α > 0 is small, the equilibrium solution u∗(x) matches the resource m(x)
better than simple diffusion, at least in convex domains. (In nonconvex domains
there are counterexamples showing that advection up the resource gradient is
not necessarily beneficial to a population; see [25].) Even in convex domains,
when α is large, u∗(x) will typically concentrate near peaks of m(x) and thus
match the resource less well. In fact, it is shown in [16] that

‖u∗‖L2(Ω) → 0 as α→∞.

To further understand the effects of advection on selection, consider

(4.4)



∂u

∂t
= ∇ · [du∇u− αu∇m] + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= ∇ · [dv∇v − βv∇m] + (m(x)− u− v)v in Ω× (0,∞),

[du∇u− αu∇m] · ~n = [dv∇v − βv∇m] · ~n = 0 on ∂Ω× (0,∞).

For simplicity, assume that Ω is convex and
∫

Ω
m(x)dx > 0. Then semi-trivial

steady states (u∗(x), 0) and (0, v∗(x)) exist for all du > 0, dv > 0, α ≥ 0
and β ≥ 0. The linear stability of these two equilibrium solutions (u∗(x), 0)
and (0, v∗(x)) depends on the principal eigenvalues τ0 and σ0 of the eigenvalue
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problems

(4.5)

{
∇ · [dv∇ψ − βψ∇m] + (m(x)− u∗)ψ = τψ in Ω,

[dv∇ψ − βψ∇m] · ~n = 0 on ∂Ω,

and

(4.6)

{
∇ · [du∇φ− αφ∇m] + (m(x)− v∗)φ = σφ in Ω,

[du∇φ− αφ∇m] · ~n = 0 on ∂Ω,

respectively. Several special cases have been investigated.

Case 1. du ≈ dv, α > 0, α ≈ 0 and β = 0.
In [15], the authors studied the stability of (u∗(x), 0) and (0, v∗(x)) by
perturbing the system near du = dv = d0, α = β = 0. To be more
explicit, let θ(x) be the positive solution of{

d0∆θ + (m(x)− θ)θ = 0 in Ω,

∇θ · ~n = 0 on ∂Ω.

Set du = d0 + εdu1 + ..., dv = d0 + εdv1 + ..., α = εα1 + ... and β = 0.
Then u∗(x) = θ(x) + εu1 + ..., v∗(x) = θ(x) + εv1 + ..., and this leads to
perturbed eigenvalue problems for the linear stability of (u∗(x), 0) and
(0, v∗(x)). It is verified that τ0 = ετ1 + ... and σ0 = εσ1 + ..., where
σ1 = −τ1 = (dv1 − du1)I1(θ) + α1I2(θ), I1(θ) > 0 and I2(θ) > 0. Hence
clearly, if α1 >> 1, even with du1 > dv1, we still have τ0 < 0, σ0 > 0
for ε ≈ 0, ε > 0, which means that (u∗(x), 0) is stable and (0, v∗(x))
is unstable. Therefore there could be selection for the sub-species with
faster diffusion (represented by u) when it is combined with advection
up the resource gradient.

If we additionally assume that the set of critical points of m(x) has measure
zero, there are another two cases, which are treated in [21].

Case 2. du, dv are arbitrary, α is large while β is small. It is proved in [21] that
there is a constant Λ1 independent of β such that if

(α, β) ∈ [Λ1,∞)×
[
0,

dv
maxΩ m

]
,

then the equilibrium solutions (u∗(x), 0) and (0, v∗(x)) of (4.4) are both
unstable. Hence the two species can coexist.
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As mentioned before, the stability of (u∗(x), 0) is determined by the
sign of the principal eigenvalue τ0 of the eigenvalue problem (4.5). Set-
ting ρ = e−(β/dv)m(x)ψ, (4.5) is converted intodv∇ · [e

(β/dv)m∇ρ] + e(β/dv)m(m(x)− u∗)ρ = τe(β/dv)mρ in Ω,
∂ρ

∂n
= 0 on ∂Ω.

Since ‖u∗‖L2(Ω) → 0 as α→∞, we have∫
Ω

e(β/dv)m(m(x)− u∗)dx→
∫

Ω

e(β/dv)mm(x)dx > 0.

Hence τ0 > 0 for α large. Similarly, the stability of (0, v∗(x)) is deter-
mined by the principle eigenvalue σ0 of the converted problemdu∇ · [e

(α/du)m∇%] + e(α/du)m(m(x)− v∗)% = σe(α/du)m% in Ω,
∂%

∂n
= 0 on ∂Ω.

For coexistence it suffices to show that the principal eigenvalue of the
above problem is positive when α is large enough and β is small. A
maximum principle argument shows that maxΩ(m(x)− v∗) > 0 if
β < ν/maxΩ(m(x)). It follows that∫

{x:m(x)−v∗>0}
e(α/du)(m−v∗)(m− v∗)dx→∞

as α→∞. Integral estimates then can be used to show that for α large,∫
Ω

e(α/du)(m)(m− v∗)dx > 0,

so that σ0 > 0 for α large, as needed.
Case 3. du, dv are arbitrary, β is large and α is larger.

This case is also studied in [21] and the following result is proved: there
is an increasing function Λ2(β) defined on [ dv

minΩm
,∞) such that if β ≥

dv

minΩm
and α ≥ Λ2(β) then the semi-trivial steady state (0, v∗) of (4.4)

is globally asymptotically stable, that is, the species v prevails.

It is quite interesting and important to interpret these results from a biological
point of view. In the first case, due to the effect of advection (α > 0, α ≈ 0), u∗

matches the resource m(x) better than v∗ hence u∗ wins. However, in the second
case, for u∗, the advection up resource gradient is strong, hence it overmatches
m(x) where m(x) is large and undermatches when m(x) is small. However, for
v∗, the advection is weak and thus v∗ overmatches m(x) when m(x) is small
and undermatches m(x) when it is large. This makes it possible for u∗ and
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v∗ to share the resources and coexist. Finally, in the third case, due to the
strong advection, both u∗ and v∗ overmatch the resource when m(x) is large
and undermatch when m(x) is small. But v∗ matches m(x) better than u∗ since
the advection for u∗ is too strong. Therefore v∗ wins.

In a summary, mathematical analysis suggests that in logistic-type models,
the competitive advantage goes to strategies that allow the species to better
match the resources m(x).

There are many related results on the effects of advection on m(x) and there
has been more precise analysis of concentration phenomenon of the problem
(4.4). For further discussion and detailed derivations of the results described
above see [5, 8, 15, 16, 21, 22, 25, 40, 59, 61] and the references therein. However,
many important questions still remain open. First, obviously in (4.4),


∂u

∂t
= ∇ · [du∇u− αu∇m] + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= ∇ · [dv∇v − βv∇m] + (m(x)− u− v)v in Ω× (0,∞),

[du∇u− αu∇m] · ~n = [dv∇v − βv∇m] · ~n = 0 on ∂Ω× (0,∞),

the only way for u∗ or v∗ to match resources perfectly is to choose du = α = 0
or dv = β = 0. Now suppose that du, dv ≥ d0 > 0. Then one has a series of
open or partially open questions as follows:

• Assume that du = dv = d0, is there an evolutionarily stable strategy
corresponding to some particular value of α? (Recently Lam and Lou
[60] have given an affirmative answer in the case of small diffusion and
some conditions on m(x), but they also give examples suggesting that
the general case is quite subtle.)
• What if du > 0 and dv > 0 are fixed? Is there a choice of α such that u

wins for any β? Or is there a choice of β such that v wins for any α?
• Suppose that du, dv ≥ d0 > 0. Is there an evolutionarily stable choice

for (du, α)?
• Suppose that α = β is fixed. Is there an evolutionarily stable choice of
du?

There are many other variations of these kinds of questions.
A related model which consists of three interacting species is studied in [36].

In this model, think of the competitors as predators P1, P2 that compete for the
same prey V , where V has a spatially varying resource R(x) and the predators
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track a combination of prey and prey resource gradients:

∂Pi
∂t

= ∇ · (di∇Pi − αiPi∇[τi∇R + (1− τi)∇V ]) + (−k + aV )Pi

in Ω× (0,∞),
∂V

∂t
= dv∆V + [R(x)− V − b(P1 + P2)]V in Ω× (0,∞),

(di∇Pi − αiPi∇[τi∇R + (1− τi)∇V ]) · ~n = ∇V · ~n = 0

on ∂Ω× (0,∞),

for i = 1, 2. The parameters τi describe the relative weights that the predators
give to information on prey density versus information on the density of the
prey’s resource. It is routine to show that each predator Pi can persist when
the other is not present if k < k∗i where k∗i is the principal eigenvalue of{

∇ · (di∇ψ − αiψ∇[τi∇R + (1− τi)∇θ]) + aθψ = kψ in Ω,

(di∇ψ − αiψ∇[τi∇R + (1− τi)∇θ]) · ~n = 0 on ∂Ω,

and θ(x) > 0 satisfies {
dv∆θ + (R(x)− θ)θ = 0 in Ω,

∇θ · ~n = 0 on ∂Ω.

In particular, in [36], it is proved that in the one dimensional case Ω = (0, 1),
under certain conditions on R(x), k∗i is increasing in τi, i = 1, 2 for small positive
α. This implies that tracking the resource R(x) instead of tracking the prey
itself is helpful for each predator on its own for small positive α. Many problems
regarding this model remain open, especially for higher dimensional cases.

4.2. Ideal free distribution. A verbal theory developed by ecologists to de-
scribe how organisms organisms are distributed in space is based on the idea
that if individuals have complete knowledge of their environment and are free
to move, they will locate themselves to optimize fitness. This is called the ideal
free distribution [37], [38]. Here fitness is interpreted in the evolutionary sense
of expected reproductive success rate, which typically depends on habitat and
crowding. The ideal free distribution can be characterized by two key features:
• At equilibrium, all individuals at all locations will have equal fitness, since
otherwise some individuals would move from locations of lower fitness to those
where fitness is higher, and
• there should be no net movement at equilibrium since all individuals have op-
timized their locations and thus an individual moving to a new location would
reduce its fitness unless it traded places with an individual who was at the
location.
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First, let us summarize some of the main topics related to the ideal free dis-
tribution. Questions arise at various different spatial and temporal scales. At
the micro scale of individual behavior, recall that random walks based on sim-
ple diffusion, diffusion depending on arrival or departure point, and advection
can produce a range of possible model forms as continuum limits. That raises
questions about which kinds of local dispersal behavior can produce a global
ideal free distribution. This is biologically interesting because if a population
can achieve an ideal free distribution based on local behavior, a complete knowl-
edge of the environment is not required. This makes the theory more plausible.
At the meso scale of population dynamics and dispersal, what does ideal free
dispersal mean in reaction-diffusion-advection equations or other types of mod-
els? Finally, at the macro scale of evolution of species, are strategies leading
to ideal free distribution evolutionarily stable? (Numerical results by McPeek
and Holt [71] on two-patch models suggest that this is true in the models they
studied. We will see that it is in fact true in a number of settings.)

To further interpret the ideal free distribution at the meso scale, consider the
following example

∂u

∂t
= ∇ · [d(x, u)∇u− αu∇e(x, u)] + f(x, u)u in Ω× (0,∞),

[d(x, u)∇u− αu∇e(x, u)] · ~n = 0 on ∂Ω× (0,∞).

Here, fitness is regarded as local intrinsic growth rate f(x, u). At the meso
scale, the idea for the dynamics of ideal free distribution is to add move-
ment up gradient of f(x, u) or some related quantity. At equilibrium u∗ > 0,
ideal free dispersal implies equal fitness, that is, f(x, u∗) is constant. Clearly,∫

Ω
f(x, u∗)u∗dx = 0 due to the no-flux boundary condition. Hence we have

f(x, u∗) ≡ 0. Note that this directly contradicts the key assumption in Hast-
ings’ approach to showing that there is selection for slower dispersal in the case
of simple diffusion (see Section 4.1), which in turn suggests that there might be
selection that favors ideal free dispersal since if it is possible for a population
to achieve an ideal free distribution then it will match the available resources
perfectly. Furthermore, there is no net movement, so it must be the case that{

∇ · [d(x, u∗)∇u∗ − αu∗∇e(x, u∗)] = 0 in Ω,

[d(x, u∗)∇u∗ − αu∗∇e(x, u∗)] · ~n = 0 on ∂Ω.

It is possible to satisfy this requirement within some classes of dispersal strate-
gies but not others. It is not possible with simple diffusion. We will examine
some types of dispersal strategies where it is possible. It turns out that certain
combinations of simple diffusion and advection and certain forms of diffusion
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depending on arrival or departure point can support an ideal free distribution.
This is how we interpret the ideal free distribution at the meso scale.

In the following, first we want to talk about several strategies which support
an ideal free distribution and then further analyze the models whenever possible.

Example 1 [24]. Assume that individuals can sense resource and population
gradients, and advect along them. Specifically, using logistic fitness f(x, u) =
m(x)− u, assume that the advection is up the fitness gradient. Then we have

(4.7)
∂u

∂t
= −α∇ · [u∇(m(x)− u)].

The following cases are studied separately.

Case 1. Without population dynamics. Suppose that Ω = (0,∞) and no-flux
boundary condition at x = 0. W.l.o.g., set α = 1 in (4.7). Define

E(t) =
1

2

∫ ∞
0

u2

[
∂

∂x
(m− u)

]2

dx.

Formal computation yields that

E ′(t) = −
∫ ∞

0

u

(
∂u

∂t

)2

dx+
1

2

∫ ∞
0

∂2m

∂x2
u2

[
∂

∂x
(m− u)

]2

dx.

If ∂2m
∂x2 ≤ 0, then E ′ ≤ 0. Hence, the model is expected to stabilize with

u
∂

∂x
(m− u) = 0.

Therefore, fitness m(x)− u is constant where u 6= 0.
Case 2. With population dynamics. Incorporating population dynamics of lo-

gistic type, we have
∂u

∂t
= −α∇ · [u∇(m(x)− u)] + (m(x)− u)u in Ω× (0,∞),

u∇(m(x)− u) · ~n = 0 on ∂Ω× (0,∞).

Obviously, u∗ = m(x) satisfies this problem, hence this model supports
ideal free distribution.

Since (4.7) is a degenerate diffusion equation, it is expected to be mathematically
similar to porous medium equations and related problems. An ecological model
without advection but with degenerate diffusion is studied in [33]. A variation
on the model (4.7) that incorporates population growth and random diffusion
is studied in [17]. The assumption that there is some random movement is
plausible since individuals may need to move at random to search for food or
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avoid predators. Here is the reaction-diffusion-advection equation with no-flux
boundary condition:

(4.8)


∂u

∂t
= ∇ · [d∇u− αu∇(m(x)− u)] + (m(x)− u)u in Ω× (0,∞),

[d∇u− αu∇(m(x)− u)] · ~n = 0 on ∂Ω× (0,∞).

This model does not support an ideal free distribution if m depends on x,
because if u∗ = m is an equilibrium the equation forces m to be constant.
However, if individuals move rapidly up the fitness gradient (α large) or have
limited random movement (d small) then the model can have an equilibrium
where u ≈ m. Among other things, the following result is proved in [17]:

Theorem 4.1. Suppose that m(x) > 0 in Ω. For large α/d, the problem (4.8)
has a unique positive steady state u which is globally asymptotically stable. More-
over, for any given η > 0, if α ≥ η and α/d→∞, then u→ m in C2(Ω).

This result shows that a dispersal mechanism based on local information
about the environment and population density can approximate the ideal free
distribution and such a dispersal mechanism may sometimes be advantageous
because it allows populations to approximately track resource availability.

Example 2. Conditional dispersal requires knowledge of conditions, which
in turn requires sensory information. Suppose that the sensory response to a
stimulus s is G(s), where s might represent the number of resource items or
other individuals encountered in unit time and G(s) should be an increasing
function. Then assume that individuals advect on the gradient of the difference
between their sensory response to resources and their response to density, so
that they balance seeking resources and avoiding crowding. That leads to the
model

∂u

∂t
= −∇ · [u(∇G(m)−∇G(u))] + (m(x)− u)u in Ω× (0,∞),

u(∇G(m)−∇G(u)) · ~n = 0 on ∂Ω× (0,∞).

This model supports an ideal free distribution, that is, a positive equilibrium
u∗ = m(x), if m(x) > 0.

According to the Weber-Frechner Law [32], the intensity of sensory response
to a stimulus is logorithmic, that is G(s) = γ ln s, where γ is a positive constant.
Therefore the previous model becomes

(4.9)


∂u

∂t
= γ∇ ·

[
∇u− u∇m

m

]
+ (m(x)− u)u in Ω× (0,∞),[

∇u− u∇m
m

]
· ~n = 0 on ∂Ω× (0,∞).
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In fact, in this model, there is no direct density dependence in dispersal, hence
this strategy is not directly fitness dependent and does not require density in-
formation. Instead, it can be interpreted as saying that individuals move up
the resource gradient but go slower if m is large, that is, when there are a lot
of resources available.

Example 3. Recall that in the micro-scale diffusion process where the dispersal
probability depends on both departure point as p1(x) and arrival point as p2(x),
the diffusion equation is

∂u

∂t
= γ∇ ·

[
p2

2(x)∇
(
p1(x)

p2(x)
u

)]
+ (m(x)− u)u.

Suppose that m(x) > 0. It is easy to see that, if p1(x)
p2(x)

= γ0

m
, then this model

supports an ideal free distribution. Particularly, if p1(x) = γ1/
√
m and p2(x) =

γ2

√
m, then this diffusion equation becomes

∂u

∂t
= γ3∇ ·

[
m(x)∇

(
u

m(x)

)]
= γ3∇ ·

[
∇u− u∇m

m

]
+ (m(x)− u)u,

where γ3 = γ1γ2, which is the same as the model (4.9). Another way to obtain
a model which can support an ideal free distribution is to take p2 constant and
p1 = 1/m(x). Obviously, there are many more possibilities.

Now, we are ready to discuss evolutionary stability of ideal free dispersal
based on advection. Consider

(4.10)


∂u

∂t
= du∇ · [∇u− u∇P ] + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= dv∇ · [∇v − v∇Q] + (m(x)− u− v)v in Ω× (0,∞),

[∇u− u∇P ] · ~n = [∇v − v∇Q] · ~n = 0 on ∂Ω× (0,∞),

where P (x), Q(x),m(x) ∈ C2(Ω) and du, dv,m(x) > 0. See [3], [18] and [39].

Theorem 4.2 ([3]). Suppose that P = lnm and Q− lnm is not constant, then
(u∗, 0) is globally asymptotically stable in (4.10), where u∗ = m(x) is the ideal
free distribution of the model (4.9).

This shows that within the class of strategies of the form du∇ · [∇u− u∇P ],
the strategies with P = lnm are the only evolutionarily stable strategies. It
is worth pointing out that, according to the definition of evolutionarily stable
strategies, it suffices to verify that (u∗, 0) is locally stable. But unfortunately
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there is a difficulty in analyzing local stability of (u∗, 0). Actually, this issue
appears in a more general case. Suppose that the general system

∂u

∂t
= Lu+ f(x, u+ v)u in Ω× (0,∞),

∂v

∂t
=Mv + f(x, u+ v)v in Ω× (0,∞),

with no-flux boundary conditions, admits a semi-trivial steady state (u∗, 0),
where u∗ is the ideal free distribution of

∂u

∂t
= Lu+ f(x, u)u in Ω× (0,∞),

again with no-flux boundary condition. Hence, as in the discussion at the
beginning of this subsection, one has f(x, u∗) = 0. Then it is routine to check
that the linearized problem at (u∗, 0) is

(4.11)

{
Lψ + fu(x, u

∗)u∗(ψ + φ) = σψ in Ω,

Mφ = σφ in Omega,

with no-flux boundary conditions. In particular, if

Mφ = ∇ · [dv(x)∇φ− φ∇Q(x)] in Ω

with boundary condition

[dv(x)∇φ− φ∇Q(x)] · ~n = 0 on ∂Ω,

then integrating the second equation in (4.11) shows that σ = 0 is the principal
eigenvalue. Therefore, the linearized problem (4.11) only yields neutral stability
and nonlinear analysis is required for further results.

Fortunately, in studying the problem (4.10), monotone methods apply. See
Section 3.2. Hence to prove Theorem 4.2, it suffices to verify that (0, v∗) is
linearly unstable and (4.10) has no coexistence steady state. This is done in [3].

In another type of model, where the dispersal probability depends on depar-
ture point,

(4.12)


∂u

∂t
= ∆(du(x)u) + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= ∆(dv(x)v) + (m(x)− u− v)v in Ω× (0,∞),

∇(du(x)u) · ~n = ∇(dv(x)v) · ~n = 0 on ∂Ω× (0,∞),

analysis similar to that in [3] shows that if du(x) = d0/m(x), then
∂u

∂t
= ∆(du(x)u) + (m(x)− u)u in Ω× (0,∞),

∇(du(x)u) · ~n = 0 on ∂Ω× (0,∞)



46 CHRIS COSNER

admits an ideal free distribution u∗ = m(x), and if dv(x)m(x) is nonconstant,
then (u∗, 0) is globally asymptotically stable. Again, strategies that lead to an
ideal free distribution are evolutionarily stable relative to those that do not. (In
general it is possible for different strategies that lead to ideal free distributions
to coexist in a state of neutral stability.)

Returning to the model (4.10), there are many possible forms for P (x) and
Q(x) and various results about how those influence coexistence or exclusion; a
number of those are presented in [39]. For example, suppose that P = lnm +
αR(x), Q = lnm + βR(x) and R(x) is nonconstant. If αβ < 0, then the semi-
trivial steady states (u∗, 0) and (0, v∗) are unstable, hence u and v could coexist.
In the system

∂u

∂t
= ∇ · [du∇u− αu∇ lnm] + (m(x)− u− v)u in Ω× (0,∞),

∂v

∂t
= ∇ · [dv∇v − βv∇ lnm] + (m(x)− u− v)v in Ω× (0,∞),

[du∇u− αu∇ lnm] · ~n = [dv∇v − βv∇ lnm] · ~n = 0 on ∂Ω× (0,∞)

it is proved in [39] that if Ω ⊂ R is an interval, m′(x) > 0, and du = dv, then
the strategy α = du is convergent stable. However, within the restricted class
of strategies shown in (4.2) where only α and β are allowed to vary, there is
numerical evidence of locally evolutionarily or convergent stable strategies with
α 6= du if m(x) is not monotone. Many detailed questions about evolutionary
stability of dispersal strategies within particular classes of strategies remain
open.

4.3. Time periodic models. As discussed at the end of Section 2.2, for the
following linear operators

Lu = ∂u/∂t−A(t)u,

where

A(t)u =
N∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

N∑
i=1

ai(x, t)
∂u

∂xi
+ a0(x, t)u

is uniformly strongly elliptic, all coefficients are smooth and T−periodic in t,
there is a well developed theory for the existence of principal eigenvalues. There-
fore, the ideas of comparing dispersal strategies extend to this case. However,
the results are quite different.
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Theorem 4.3 ([51]). If in the following problem
∂u

∂t
= du∆u+ (m(x, t)− u− v)u in Ω× (0,∞),

∂v

∂t
= dv∆v + (m(x, t)− u− v)v in Ω× (0,∞),

∂u/∂n = ∂v/∂n = 0 on ∂Ω× (0,∞)

where m(x, t) is T−periodic in t, then there may be coexistence, or the semi-
trivial steady state (u∗, 0) may be stable even when du > dv.

Note that when m = m(x), this problem is reduced to (4.3) in Section 4.1
and there is always selection for slower random dispersal. Hence, the periodic
case is qualitatively different. Numerical simulation in [71] for two-patch models
shows that certain conditional dispersal strategies are evolutionarily stable in
time varying environments.

Generally speaking, it is not clear how anything like an ideal free distribu-
tion can be achieved in a time-periodic model by using mechanisms based on
advection and variable diffusion. It may be impossible, as in the purely spatial
case with only simple diffusion and advection on ∇m. There are many open
questions about which conditional dispersal strategies are evolutionarily stable
or convergent stable in environments that vary in both time and space.

Overall, existence theory for evolutionarily stable strategies is a very chal-
lenging topic. Based on the discussion so far, our guess is that, in models that
support an ideal free distribution, the form of evolutionarily stable strategies
will be those leading to the ideal free distribution. What if an ideal free distri-
bution is impossible within a class of strategies? Is there still an evolutionarily
stable strategy? How can it be characterized? This is a very large class of open
problems. If restricted to dispersal strategies based on advection and diffusion
in spatially varying but temporally constant environments, existence theory for
evolutionarily stable strategies can be rephrased more explicitly as a series of
topics.

(i) Identify all the dispersal strategies based on advection and diffusion that
can lead to an ideal free distribution.

(ii) In a class of strategies where an ideal free distribution is possible, deter-
mine which strategies are evolutionarily stable. As mentioned earlier, a
reasonable guess is that it will be those resulting in an ideal free distri-
bution. This guess has been verified in models (4.10) and (4.12).

(iii) In classes of strategies that do not support an ideal free distribution,
determine how to characterize evolutionarily stable strategies.

For strategies in time periodic cases, the same question as (iii) arises.
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4.4. Spatially discrete models. Spatially discrete models are widely used by
ecologists to describe populations in patchy habitats. They allow more general
dispersal than diffusion and may be simpler to analyze in some cases since they
are finite dimensional.

Let us begin our discussion with single species models which are discrete in
space and continuous in time. Suppose that there is a network of n habitat
patches. Let ui denote the population in patch i, 1 ≤ i ≤ n. A model for
dispersal in a spatially discrete setting would typically take the form

d~u

dt
= M~u,

where ~u = (u1, ...un) and M = ((dij)) is an n×n matrix with dij ≥ 0, i 6= j.The
matrix M it is called irreducible if M : Rn → Rn has no invariant subspace
except Rn, while it is called primitive if Mp has all entries positive for some
power p. It is known that if M is irreducible, then ui(0) > 0 for some 1 ≤ i ≤ n
implies that when t > 0, uj(t) > 0 for all 1 ≤ j ≤ n. This is sufficient
to establish results analogous to the strong maximum principle for parabolic
equations. If M is also primitive, then M has a unique principal eigenvalue σ0,

that is, M~φ0 = σ~φ0 with σ0 > 0 and ~φ0 > 0. The dynamics of spatially discrete
problems

dui
dt

= Gi(~u),

where 1 ≤ i ≤ n, can be classified in the same way as in Section 3.1. For
example, if ∂Gi/∂uj ≥ 0 for i 6= j, the system is called a cooperative system. In
a cooperative system, if ~u, ~v are two solutions with ~u(0) ≥ ~v(0), then ~u(t) ≥ ~v(t).
Thus it is a monotone dynamical system. Models for population dynamics in
discrete space and continuous time are typically formulated as

(4.13)
dui
dt

=
n∑
j=1

dijuj −
n∑
j=1

djiui + fi(ui)ui, i = 1 . . . n.

Since the system in (4.13) is cooperative, it can be treated by monotone methods
in a manner similar to a single reaction-diffusion equation. For example, if the
matrix M = ((dij)) is irreducible and for each i we have fi(0) > 0, f ′i(u) < 0,
and fi(u) < 0 for u large, then (4.13) will have a unique positive equilibrium
that is globally stable among positive solutions, exactly as in the case of a
reaction-diffusion model with a logistic type of nonlinearity.
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Models discrete in both time and space are also very common, since many
organisms only reproduce once a year. Discrete dispersal can be formulated as

ui(t+ 1) =
n∑

j=1,j 6=i

Dijuj(t) +

(
1−

n∑
j=1,j 6=i

Dji

)
ui(t),

where 1 ≤ i ≤ n and Dij represents fraction of population in patch j that goes
to patch i, so that 0 ≤ Dij ≤ 1 for all i, j. For the dynamics, generally it is
expressed as

u(t+ 1) = f(t, u(t))u(t).

The linear case

u(t+ 1) = au(t)

is a very simple example. It is easy to see that, in this case, u(t) = atu(0).
Hence as t → ∞, u(t) → ∞ if a > 1, while u(t) → 0 if 0 < a < 1. For
autonomous case

u(t+ 1) = f(u(t))u(t),

if f(0) > 1 and f(u) < 1 for u large, then there is an equilibrium u∗, i.e.,
f(u∗) = 1. Moreover, if f(u) is decreasing, then u∗ is unique. If f(u)u is also
increasing then the equilibrium is stable, but if not the equilibrium may lose
stability and there may be stable periodic solutions or even chaos.

It is natural to consider multiple species models which are discrete in space.
In the case of continuous time such a model for N interacting species would
have the form

(4.14)
duki
dt

=
n∑
j=1

dkiju
k
j −

n∑
j=1

dkjiu
k
i + fki (u1

i , u
2
i , ..., u

N
i )uki ,

where superscripts indicate species, so that ((dkij)) represents the dispersal strat-
egy for the population of species k, where 1 ≤ k ≤ N and 1 ≤ i, j ≤ n.

Suppose that (~u1∗, ~u2∗, ..., ~uN∗) is an equilibrium solution of (4.14). For sim-
plicity, assume that the attempt at invasion is only made by the first species

and the invader ~v1 uses strategy ((d̃1
ij)). In Hastings’ modeling approach (see

the beginning of Section 4.1), whether ~u1∗ is invasible is determined by stability
of ~v1 = 0 relative to nonnegative initial data in the system

(4.15)
dv1

i

dt
=

n∑
j=1

d̃1
ijv

1
j −

n∑
j=1

d̃1
jiv

1
i + F 1

i (~u1∗ + ~v1, ~u2∗, ..., ~uN∗)v1
i ,

where 1 ≤ i ≤ n. If ~v1 = 0 is stable then ~u1∗ is not invasible by ~v1; if ~v1 = 0 is
unstable then ~u1∗ is invasible by ~v1. We say a dispersal strategy ((d1

ij)) is ideal
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free relative to (~u1∗, ~u2∗, ..., ~uN∗) if there is no net movement of population when
(~u1, ~u2, ..., ~uN) = (~u1∗, ~u2∗, ..., ~uN∗), that is

(4.16)
n∑
j=1

d1
iju

1∗
j −

n∑
j=1

d1
jiu

1∗
i = 0, 1 ≤ i ≤ n.

Here comes the main question: what strategies are evolutionarily stable? Is
ideal free dispersal evolutionarily stable? It turns out that ideal free dispersal
is necessary for evolutionary stability under very general conditions.

Theorem 4.4 ([14]). If u1∗
i > 0 for some i and ((d1

ij)) is not ideal free, then

~v1 = 0 is unstable in (4.15) for some strategy ((d̃1
ij)) and ((d̃1

ij)) can be chosen
to be ideal free.

This result implies that strategies that do not lead to an ideal free distri-
bution can not be evolutionarily stable. In other words, for a strategy to be
evolutionarily stable, it is necessary that it produces an ideal free distribution
of the population. When is that sufficient? Consider the model

(4.17)
duki
dt

=
n∑
j=1

dkiju
k
j −

n∑
j=1

djiu
k
i + (mi −

N∑
`=1

u`i)u
k
i ,

for i = 1 . . . , n and k = 1 . . . N . Assume that dkij ≥ 0 for i 6= j, ((dij)) is
irreducible, and mi > 0 for all i.

Theorem 4.5 ([19]). If the first population has ideal free dispersal, so that its

single-population equilibrium (~u 1∗,~0, . . .~0) equals (~m,~0, . . . ,~0), and if there is

no nonnegative equilibrium (0, ~u 2∗, . . . ~u N∗) so that
N∑
k=2

ck~u
k∗ = ~m for noneg-

ative constants ck, then (~u 1∗,~0, . . . ,~0) is globally asymptotically stable in (4.17).

It is worth pointing out that the proof of Theorem 4.5 relies on a Lyapunov
function, because analyzing the linear stability of (~m,~0, . . . ,~0) in (4.17), we
can only derive neutral stability. The Lyapunov function has a form similar to
those that have been used to study stability in many ecological models. If we
let ~u = (~u1, . . . , ~uN) the Lyapunov function is

V (~u) =
N∑
k=1

n∑
i=1

uki −
n∑
i=1

milnu
1
i .

Let ~u∗ = (~u 1∗,~0, . . .~0) = (~m,~0, . . . ,~0). We get V (u) > V (u∗) for u 6= u∗

and dV/dt ≤ 0 along trajectories but if dV/dt = V̇ (u) we find V̇ (u) = 0 for
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some u 6= u∗. (No direct asymptotic stability.) However, we can use LaSalle’s
invariance principle (see [19, 41]) to obtain the global asymptotic stability of
~u∗. In this setting the ideal free condition (4.16) can be stated as requiring the
matrix ((aij)) = ((d1

iju
1∗
j )) to have the property of line sum symmetry, that is,

n∑
j=1

aij =
n∑
j=1

aji for i = 1 . . . , n.

It turns out that the property of line sum symmetry is equivalent to an inequal-
ity that is crucial to the analysis of the Lyapunov function; see [19, 35].

There has been some work on the evolution of dispersal in the context of
models that are discrete in both space and time. That includes the numerical
studies by McPeek and Holt [71]; see also [58].

4.5. Nonlocal models. Our last topic is nonlocal models. In such models
space and time are viewed as continuous, but the dispersal terms are given by
integral operators rather than by advection or diffusion operators. For a single
population with density u on a bounded domain Ω, a typical nonlocal logistic
model would have the form

(4.18)
∂u

∂t
=

∫
Ω

k(x, y)u(y, t) dy − u(x, t)

∫
Ω

k(y, x) dy + u[m(x)− u]

for x ∈ Ω and t > 0. The kernel k(x, y) describes the rate at which individu-
als leave point y and move to point x. Given a population density u(x, t), the
first term on the right represents the overall rate at which individuals arrive at
point x and second term describes the overall rate at which they leave point
x. Integrating the first two terms on the right side of (4.18) over Ω gives zero,
indicating that there is no net gain or loss of individuals due to movement.
Assume that m(x) ∈ C(Ω̄), m > 0, k ∈ C(Ω̄× Ω̄), k ≥ 0, and there exists δ > 0
such that k(x, y) > 0 for |x − y| < δ. (This last condition plays a role similar
to that played by irreducibility in the matrix case; namely, it implies that the
nonlocal model satisfies an analogue of the strong maximum principle.) Models
similar to (4.18) and related models for interacting species have been studied
by various researchers; see [4, 20, 26, 27, 28, 29, 47, 53, 55] and the references
in those papers. Models such as (4.18) have many properties similar to the
corresponding reaction-advection-diffusion models. For positive initial data the
model (4.18) has global solutions that converge to a unique positive equilibrium,
and it admits a strong maximum principle. However, it does not have the regu-
larity properties of parabolic partial differential equations, so bounded forward
orbits are not generally precompact. This difference make the analysis of non-
local models challenging, because standard versions of results from dynamical
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systems such as the existence of compact attractors, some aspects of persistence
theory, and the LaSalle invariance principle require some type of compactness or
precompactness of bounded forward orbits. Another issue is that although the
operators in (4.18) are bounded, linearized problems associated with (4.18) may
not have principal eigenvalues. They generally will have spectral bounds, but
there may not always be an eigenfunction corresponding to the spectral bound.
Again, standard versions of results such as the Krein-Rutman theorem require
some type of compactness. In the case of reaction-advection-diffusion models,
the operators in the models usually are not compact themselves but they often
have compact resolvents because of elliptic regularity theory. However, that is
not generally true in the nonlocal case.

Models for interacting populations with nonlocal dispersal can be constructed
as in the case of local dispersal. A typical form would be

(4.19)


∂u

∂t
=

∫
Ω

k(x, y)u(y, t)dy −
∫

Ω

k(y, x)u(x, t)dy + f(x, u, v)u,

∂v

∂t
=

∫
Ω

k̃(x, y)v(y, t)dy −
∫

Ω

k̃(y, x)v(x, t)dy + g(x, u, v)v.

Models of the form (4.19) for two competing species are studied in [47, 53].
In the case of competition, the nonlocal models still satisfy comparison prin-
ciples analogous to those for reaction-advection-diffusion models. Specifically,
in the case of Lotka-Volterra competition, if (u1, v1) and (u2, v2) are nonneg-
ative solutions of (4.19) with u1(x, 0) ≥ u2(x, 0) and v1(x, 0) ≤ v2(x, 0) then
u1(x, t) ≥ u2(x, t) and v1(x, t) ≤ v2(x, t) for t > 0. In [53] the authors studied
a system of the form

(4.20)


∂u

∂t
= d

∫
Ω

k(x− y)u(y, t)dy − u(x, t) + (m(x)− u− v)u,

∂v

∂t
= D

∫
Ω

k(x− y)v(y, t)dy − v(x, t) + (m(x)− u− v)v.

They showed that if D > d then the single-species equilibrium (u∗, 0) is asymp-
totically stable. This is similar to the result for the case of ordinary diffusion
studied in [34], and it implies that the strategy of not dispersing at all is conver-
gent stable. As in the case of ordinary diffusion, nonlocal models with dispersal
kernels of the form used in (4.20) and nonzero dispersal rate cannot support
an ideal free distribution. In the nonlocal setting, a dispersal kernel k(x, y)
supports an ideal free distribution in (4.18) if m(x) > 0 and

(4.21)

∫
Ω

k(x, y)m(y)dy −
∫

Ω

k(y, x)m(x)dy = 0,
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so that u∗ = m(x) is the positive equilibrium. This condition on the modified
kernel k(x, y)m(y) can be viewed as a continuum analogue of the line sum
symmetry condition on the matrix ((aij)) = ((d1

iju
1∗
j )) that characterizes the

ideal free condition (4.16) in the case of discrete diffusion. It was noted in
[26] that kernels of the form k(x, y) = m(x)αm(y)α−1 support an ideal free
distribution in (4.18). The case where α = 0 corresponds to a strategy of leaving
the location y at a rate inversely proportional to m(y). This is analogous to the
strategy of using diffusion with a rate based on the departure point, where the
rate is taken to be 1/m(x) if x is the departure point. ( The resulting diffusion
term in that case would have the form ∆(u/m(x)).) It was also shown in [26]
by means of a local invasibility analysis analogous to those used in [14, 43] that
the only possible evolutionarily stable strategies in the nonlocal logistic case are
those that support an ideal free distribution.

It turns out that ideal free dispersal is sufficient as well as necessary for
evolutionary stability in the nonlocal case. For models of the form

(4.22)


∂u

∂t
=

∫
Ω

k(x, y)u(y, t)dy −
∫

Ω

k(y, x)u(x, t)dy + (m(x)− u− v)u,

∂v

∂t
=

∫
Ω

k̃(x, y)v(y, t)dy −
∫

Ω

k̃(y, x)v(x, t)dy + (m(x)− u− v)v

the following result is proved in [20]:

Theorem 4.6. Suppose that u and v satisfy (4.22) where both k∗ and k are
continuous and positive on Ω̄ × Ω̄ and m(x) is continuous, positive on Ω̄, and
nonconstant. If k∗ is a dispersal strategy that supports an ideal free distribution
and k does not support an ideal free dispersal then the steady state (u∗, 0) =
(m(x), 0) is globally asymptotically stable in C(Ω̄) × C(Ω̄) for all positive and
continuous initial data.

This result is analogous to Theorem 4.5, but it only covers the case of two com-
petitors. The reason why it is possible to obtain a result for N competitors in
the discrete diffusion case but not in the nonlocal case is because the LaSalle
invariance principle is not available in the nonlocal case due to the lack of com-
pactness of bounded orbits. In the nonlocal case we still can use the Lyapunov
functional

V (t) =

∫
Ω

[
u(x, t)−m(x) + v(x, t)−m(x)ln

u(x, t)

m(x)

]
dx.

to rule out coexistence states (u∗∗, v∗∗). We then show that (0, v∗) is unstable.
The global stability of (m(x), 0) then follows from the monotonicity properties
of two species competition models.
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A general class of open problems arises in the context of nonlocal models,
namely finding ways to overcome the lack of compactness of bounded orbits and
thus extend results from the cases of ordinary and partial differential equations
to the nonlocal case. This is currently an active area of research on the effects
of dispersal in ecological models.
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